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We consider the motion of trajectories in the annular billiard, constituted of a circle with an internal,
perfectly reflecting, eccentrically located secondary circle, displaying a generic Hamiltonian befraliat-
ing periodic orbits, invariant curves, and chaotic aye&eriodic orbits embedded in the phase space are
systematically investigated, with a focus on inclusion-touching periodic orbits, up to symmetrical orbits of
period 6. Candidates for periodic orbits are detected by investigating grayscale distance charts and, afterward,
each candidate is validate@r rejected by using analytical and/or numerical methods. This Hamiltonian
problem with Hamiltonian chaognechanical languagenay equivalently be viewed as an optical problem
with optical chaogexpressed with a geometrical optics langyadiethen may be extended to the study of
interaction between a laser bedr a plane wave as a limitand a sphere with an eccentrically located
spherical inclusion, this interaction being described by a generalized Lorenz-Mie theory recently established.
Inclusion-touching periodic orbits in the annular billiard may generate a new class of morphology-dependent
resonances in the associated extended generalized Lorenz-Mie theory problem.
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[. INTRODUCTION tions can be solved by relying on a method of separation of
variables. We then say that we are facing an exactly solvable
Let us consider the interaction between an electromagelectromagnetic problem. An example of applications of a
netic wave and a perfect homogeneous sphere and focus oBLMT to MDRs is available from Ref.10].
attention on internal fields. Morphology-dependent reso- Laser beam scattering by a sphere is an exactly solvable
nances (MDRs), also called whispering gallery modes problem, leading to what is called the GLMT in the strict
(WGMs), correspond to solutions of characteristic equationssenseRef.[11] and references thergimAs aforementioned,
associated with boundary conditions, and occur at resonantke associated Hamiltonian billiard problem is integrable.
frequencies that are poles of field coefficiefts2]. At reso-  Recently, a GLMT for a sphere with an eccentrically located
nance frequencies, MDRs generate intense internal fieldspherical inclusion, with the inclusion being dielectric or per-
which are concentrated near the rim of the scatterer and mabgctly reflecting, has been establishe®]. Similarly, along
activate a host of nonlinear effects, including lasjBf) Ina  the same lines, a GLMT for a circular cylinder, with an ec-
geometrical opticéray tracing picture, MDRs are associated centrically located circular cylinder as an inclusion, should
with rays that undergo multiple reflections inside the scatbe technically feasiblg8]. In both cases, a restricted associ-
terer and without any refractive escape, upon resonance, sated Hamiltonian problem, with the inclusion being perfectly
isfy a phase-matching condition, corresponding to enhancerkflecting, leads to the annular billiard. This billiard deals
field intensities. Equivalently, we may view an equatorialwith trajectories in an annular space bounded by a st
plane of the sphere as a mechanical billiard, defining d@erna) circle, and an internal, perfectly reflecting, eccentri-
Hamiltonian mechanical problem. MDRs are then associatedally located secondary circle. In contrast with the circular
with a class of periodic orbitevithout refractive escape, see billiard, the Hamiltonian annular billiard is not integrable,
complementary discussion in Sec. Il) df the Hamiltonian  and leads to gener|&] Hamiltonian behavior, including cha-
problem expressed in terms of trajectories. This so-definedtic motion[13—-16. Therefore, we are facing the situation
circular billiard is integrable in the mechanical seiideb]  of a billiard that is nonintegrable while its extended electro-
and, therefore, only exhibits periodic orbits, and invariantmagnetic counterpart is exactly solvable.
curves in a phase space description chaotic area Hamiltonian chaos in the mechanical language is called
The characteristic equations allowing one to predict resoeptical chaos in the geometrical optics language, and has
nance frequencies do not depend on the illuminating beanbeen studied in the case of asymmetric resonant cavities
This does not mean, however, that the structure of the illu{ARCs) [17,18 with interesting applications concernir@
minating beam is irrelevant. Indeed, MDRs have to be exspoiling in deformed ring cavities and the behavior of lasing
cited from outside, and, therefore, the coupling between theroplets[19,20. However, the electromagnetic problem as-
illuminating beam and the internal field is a key is$6€7]. sociated with ARCs is not exactly solvable.
The study of such a coupling may be achieved in the frame- A study of the annular billiardwith the extended electro-
work of generalized Lorenz-Mie theorié&LMTs) that de- magnetic problem in mindis then of particular interest be-
scribe the interaction between an arbitrary shaped beamause this system simultaneously shares the properties of
(continuous or pulsedand some regular particlel8,9]. nonintegrability and exact solvability. In particular, periodic
These regular particles must be such that Maxwell's equaerbits are expected to provide specific signatures in electro-
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magnetic scattering features. In the case of three-dimensional

(3D) strongly dissipative systems, with chaotic attractors, pe- ’
riodic orbits are all unstable, densely embedded, and provide

a skeleton of the attractor that may be characterized by a {0
template and a population of periodic orbits, leading to a B’ o

topological characterizatiofRefs. [21-23 and references
therein. Any trajectory in the chaotic attractor has a recur- o x
rent behavior and shadows any periodic orbit, during finite
intervals of time. The determination of the periodic solutions
then happens to be equivalent to the knowledge of all solu

tions. B
Similarly, the knowledge of periodic solutions is of ut-
most importance for a Hamiltonian system. However, in con- FIG. 1. The annular billiard.

trast with dissipative systems, periodic solutions do not, in

general, shadow aperiodic ones because Ha_lmlltonl_an SY8pect toO is algebraically defined agO')=d. We limit our
tems do not possess any attractor, and chaotic solutions afifvestigation to the casé>0. The casal=0 is of limited
area filling (when the system can be reduced to two coordiinterest because the Hamiltonian system is then integrable.
nates, as in the annular billigrdor volume (hypervolume  The cased<0 is equivalent to the cas#>0 through am
filling. Furthermore, periodic solutions may be stable, un-rotation of the figure. This configuration is traditional in the
stable, or neutrdl4,5]. Periodic solutions are nevertheless of electromagnetic contek12] but differs from the one in Refs.
interest because they structure, at least locally, the pha§g3_14 in which the centef’ is located on the axi©x In
spacg4]. Also, for billiards, they receive an optical interpre- the billiard, trajectories are straight lines excepted at impacts
tation with significant consequences on scattering features itbn the host circle and on the inclusjowith the Snell-

the extended electromagnetic problem, such as concerningescartes law being satisfiéte angle of reflection is equal
MDRs for the circular billiard. to the angle of incidenge

The aim of this paper is, therefore, to study periodic orbits
in the annular billiard. This billiard is chosen becalbeit
simultaneously shares the properties of nonintegrability and
electromagnetic exact solvability an@) with the associated ~ The annular billiard exhibits two degrees of freedom and,
GLMT, it opens the way to the optical characterization of atherefore, requires a four-dimensional phase space. Due to
class of nonhomogeneous particles. Furthermore, becau#ee conservation of energy, the motion takes place on a three-
the status of periodic orbits in a billiard is different than the dimensional hypersurface and its description can, therefore,
one for 3D strongly dissipative systems, specific tools havde reduced to a two-dimensional mapping, by using a Poin-
to be developed. caresurface of section. The two variables for the mapping

The paper is organized as follows. Section Il presents th@re chosen to be two stroboscopic andlesa) characteriz-
annular billiard, its generic Hamiltonian behavior, and de-iNg an impact of the trajectory on the host circle. The space
rives a number of equations to be used later, for the validat®: @) is then a reduced phase spgégand is simply called
tion (or rejection of candidates for periodic orbits. Section the phase space in this paper.

Il presents the grayscale distance charts allowing one to Angles and conventions are displayed in Fig. 2. The angle
detect candidates, the analytical-numerical techniques to be
used to validatéor rejec) the candidates, and a commented
catalog of the periodic orbits up tdNE 6)-symmetrical or-
bits. Some further comments and prospective sections are
also provided. Section IV presents our conclusion. Techni- >0
calities concerning the validation of periodic orbits in the

catalog are reported in the Appendix. B’

B. Phase space

Il. THE ANNULAR BILLIARD AND ITS EQUATIONS >0
A. The annular billiard

We consider a circular boundaB, with a radiusR set 00 40
equal to 1, without any loss of generality. Inside this bound-
ary, we insert a secondary cirdlealled the inclusion in ref- B
erence to the extended GLMT electromagnetic problem o
with a radiusr<1, eccentrically located, defined by its
boundaryB’ (Fig. 1). The center of the host circle is located Y
at the originO of a Cartesian coordinate systdrDy). The
centerO’ of the inclusion is located on the ax®y (again FIG. 2. Angles and conventions for angles in the annular bil-
without any loss of generalify The location ofO’" with re- liard.
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- (i) Mg:(@g,ag)— (@1,a7) If the piece does not hit the
: inclusion.
(i) My :(¢g,a0)—(¢1,a;) if the piece does hit the in-
clusion.
From geometric considerations, we establish the hitting
condition for the mappindJ,

r=|d coq ¢o+ ap) +sinag|, 1)

in which the sign “equal” is for grazing incidence on the
inclusion. We have an obvious complementary condition for
9: the mappingV,.

The My mapping is established to read as

FIG. 3. Genericity of the annular billiard.

. . . . =@pot+2agtem, 2
¢ €[0,27] defines the location of an impact & It is mea- P10 0 @
sured from axisx, in the usual counterclockwise fashion. o= &)
With R=1, the measure of the location is equivalent to the 1o
measures= ¢ of an arc length on the host circle. The angle. . _ . . . o
ae[—m/2,+ 7/2] defines the direction of propagation after in which e=+1 for a piece running counterclockwise with

impact, measured from the normal to the host circle. TheOUt crossing the semi-axiox, ande=—1 for a piece run-

modulus of the tangential momentum at impact is then ning CIOCkW'Se without crossing the semi-aks It IS actu-
—sina, positive or zero whenve[0,27], i.e., when the ally convenient to set =+ 1 as in Ref[14]. Then,¢ is to be
vectorial component of the tangential momentum is oriente¢inderstood modulo 2 Recall, however, thag «[0,27].
counterclockwise, and negative otherwise. Impacts on thdNen, in Eq.(2) and, similarly, in other equations to come,
inclusion are characterized by an angieas defined in Fig. We have to carefully evaluate the exact modulo determina-
2. The anglew is not a phase space coordinate since thdion to be chosen. In practice, these equations will be used to
phase space is 2D, but will be convenient for algebraic mavalidate periodic orbits already detected. Therefore, the most
nipulations. The nonintegrability of the system arises fromexpedient and efficient way to choose the proper modulo
the fact that the tangential momentum is not preserved whedletermination is to check on a drawing of the periodic orbit
the trajectory hits the inclusion between two impacts on theunder study.

host circle. For theM; mapping, we obtairafter more effort
C. Genericity of the annular billiard ) -1
) ) ) ) sinwg=——[sinay+d coq o+ ag)], 4
The parameterd (location of the inclusiopandr (radius r
of the inclusion are control parameters of the system. In this
paper, explicit calculations are carried out fd=0, 5, @1~ a1= @+ agt 2w, (5)
r=0, 35. The genericity5] of the annular billiard for these
control parameter values is illustrated in Fig. 3 displaying a sina;=—r sinwy+d cog ¢, — ay), (6)

sample of trajectories starting from different initial condi-
tions in the(e, «) phase spacésuch a representation is here j, \which the angle of reflectiom on the inclusion(not a

called a Hamiltonian chart phase-space coordinates conveniently introduced. Equa-

For |of large enough, we may observe fixed points corres;o g (1) " (g agree with the ones given in RéfL4] under a
sponding to inclusion non-touching periodic orbits. These ar hange of convention = 0— /2, a— — a

the MDRs, with rational winding numbers, of the circular L . .
M, mapping is readily checked to be area preserving,

billiard. Still for || large enough, we observe invariant \ . - . :
Kolmogorov-Arnold-Moser(KAM) curves, with a=const, both with coordlnat_esgo, @) and §,p) = (¢.sina). It 1S als_o
a fact, but more tricky to check, that thd, mapping is

i.e., p=const, which are the invariant KAM curves of the L . .
circular billiard, with irrational winding numbers. For aréa-preserving in terms of coordinates p, but not in

smaller values ofal, we are dealing with inclusion-touching t€rms of (¢, @), in agreement with a remark by Berf$].
trajectories. The Hamiltonian chart then exhibits two domi-Since any mappin ) :(¢q,a0) —(¢n,ay) is a product of
nant stable periodic orbit&s we shall see later these &te Mo and M, mappings, it then follows that the annular bil-
=4 andN=6 periodic orbity surrounded by islandsnvari- liard is Hamiltonian(area preservingn terms of coordinates
ant KAM curves associated with the stability of these ojbits (s, P.
immersed in an area-filling chaotic sea.

E. Mapping sequences

D. Mappings and area-preservation A piece of trajectory withn impacts including the initial

Let us consider a piece of trajectory from initial impact impact (¢, o), i.e., with (n—1) elementary pieces, is char-
(¢0,ap) to next impact f,,a;). We must then distinguish acterized by a mappindl ,_ 1) which is a product of if
two mappings: —1) submappingdy and M, according to
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M, 7) TABLE |. Admissible mapping sequence for periodic orbits up

M. =M. M:
(n-1) Ih-1""Th-2 1 to periodN=6

in whichij’s (j=1...n—1) are O's or 1's and, by conven-

tion, the rightmost submappiniyl; :(¢o,a0) —(¢1,a1) is Sequences Label Oceurrence
the first submapping encountered along the piece of trajec- 1 1(1) 28
tory. Conveniently dropping the uppercase lettéfs the 01 2(1) 1S,INS
piece of trajectory is then characterized by a sequence of 0’s 11 2(2 none
and 1's, denote®, and called the mapping sequence of the 001 3(1) none
piece of trajectoryP, 011 3(2 1S,INS
111 3(3) none
Sp=in_1in-2...i1. tS) 0001 4(1) 1S
0101 4(2) 1S
F. Periodic orbits, equivalence classes, and admissible 0011 4(3) none
mapping sequences 0111 4(4) 1SINS
By definition, a periodic orbit of periodN (we haveN L 49 none
>1)ysatisﬁes »anp P 00001 5(1) 1S,INS
- 00101 5(2) none
- 00011 5(3) 2S,INS
(fnins anen)=(@n, ap), 9 01011 5(4) 1S2NS
and possesses a mapping that is a produdt sibmappings 00111 5(5 1S,INS
M, and M,, with coordinate endpoints identified. We also 01111 5(6) 2S,INS
assume that we only consider prime periodic orbits, Nds 11111 5(7) none
not a multiple of another integét’ <N that would also sat- 000001 6(1) 1S
isfy Eq. (9). The geometrical figure depicting a periodic orbit 001001 6(2) 1S
is invariant under: 000101 6(3) 1S
(i) a change of the initial impacte(,,«,), which is 000011 6(4) 2S
equivalent to a time translational invariance, and to a Ber- 010101 6(5) 1S
noulli shift on the mapping sequence. 001011 6(6) none
(ii) A change of the sign of the initial angte,, which is 000111 6(7) 25
equivalent to a time reversal invariance and to a reversal of 011011 6(8) 4S
the mapping sequence. - - 010111 6(9) 1S
These invariances are well exemplified in the Hamiltonian 001111 6(10) 25
chart 'for two classes of orbits, later discus$éd?2) 1 and 6 011111 6(11) 1s
(2) 1 in the catalog of Sec. Il B 111111 6(12) none

We, therefore, define equivalence classes of periodic or-
bits in which all periodic orbits displaying the same geo-
metrical picture are equivalent. This implies that all periodicus note that this condition does not always uniquely deter-
orbits in an equivalence class possess the same mapping seine the representatijenore than one representative in the
guences modulo reservals and shifts of mapping sequencesame class may share the same admissible mapping se-
Mind however that equivalent mapping sequences may bguence, see examples in the catalog of Sec. Il B, such as for
shared by periodic orbits pertaining to different clagsesh  the class of A1) 1 that possesses two admissible represen-
as the ones associated witltZp 1 and 6(4) 2 in the catalog) tatived. From now on, initial conditions denoted ag, «)

Periodic orbits may be inclusion touching or non- are reserved for admissible representatives, i.e., having ad-
inclusion-touching. The set of non-inclusion-touching peri-missible mapping sequences.

odic orbits contains all MDR$WGMs) of the circular bil- The Hamiltonian chart of Fig. 3 exhibits a visually domi-
liard (relevant to light scattering by spheyewith mapping  nant period-six stable periodic orbit that is symmetris
sequences having the form . 000 . . . ,i.e., exhibiting only  we shall see, there are symmetrical and nonsymmetrical pe-

the symbol 0. Their discussion is classi¢ahd trivia) in the  riodic orbitg. Therefore, the catalog of representatives will
Hamiltonian framework and is omitted from this pap&r]. be drawn up taN=5 for symmetrical and nonsymmetrical
Inclusion-touching periodic orbit§rom now on, simply  periodic orbits and up ttN=6 for symmetrical orbits. Ac-
called periodic orbits when there is no ambiglitgon-  cordingly, Table I lists all admissible mapping sequences up
versely possess mapping sequences containing at least ofeeN =6 in the first column.
symbol 1. We shall provide a catalog of equivalence classes Column 2 in Table | designates the admissible mapping
of periodic orbits, in which each class is displayed via onesequences by a labalB) that will be later used to label the
representative, with the following conventional condition: representatives displayed in the catalog, in whichN is
the mapping sequence of the representative must maximizée period of the sequencerbit) andB is an ordinal positive
the number of 1's on its right most locations. Such a mapinteger allowing one to order the admissible mapping se-
ping sequence is called an admissible mapping sequence. Lgtiences for a giveN. The periodN being fixed, let us con-
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sider two admissible mapping sequen&sandS, with la-  pected for special cases, when a single equation, sayfor
bels N(B;) and N(B,), respectively. We say tha$, is can be established, with examples in the AppendBuch
smaller tharS,(S;<S,) iff B;<B, according to the integer two equations may be obtained from the set of basic equa-
natural order. For instance, €1L.1. The rules used to define tions, and are called derived equations. In this section, we
the admissible mapping sequence order are as followsMLet €stablish derived equations for admissible mapping se-
be the number of 1's in a sequence. Let us consider tw&uences of the fornd...01...1,with M symbols 1, fol-
sequencesS, and S, sharing the same period and two 'owed by (N-M) symbols O(we recall that mapping se-
different values ofM, M, and M,, respectively. IfM, quences are read fr(_)m right to lefAll _adm|SS|bIe mapping
<M,, thenS,<S,. Next, let us consider two sequenc®s sequences are .of this form up b= 3 included(Table ).

andS, sharing the same peridd and the same value &f. B asic equations read as

ThenS,> S, iff the number of symbols 1 larger i®, than in
S,, in the rightmost parts of the sequences.

Now, let us consider an admissible mapping sequehce
with periodN andM symbols 1. Let us mafto a conjugate (10
S* by changing 0’'s to 1's and 1's to 0's. We obtain the
mapping sequence of a periodic orbit but this sequence is not
necessarily admissible and the periodic orbit is, therefore, Pj+1~ 1= 205t ¢t aj. (19
not necessarily an admissible representative of the equiva-
lence class. For instance5=00101 is mapped toS* _ )
=11010, which is not admissibighe associated admissible SiNaj,1=—rsiNw;+dCcog¢j:1—aj 1), (12)
mapping sequence is 0101Bimilarly, the time reversal in-
variance @< —a) concerns equivalence classes but not 1
necessarily admissible representatives. For instance, under sinw,_;==[—sinay_;—dcogey_1+ay_1)],
time reversal, the admissible mapping sequeded®011 is r
mapped tdS' = 1100, which is not admissible. In the catalog
of representatives, it will then be necessary to specify an
initial condition ¢, and an arrow of timesign of «) ensur- onm—an=20p_1+ Oy_1+ A1, (14)
ing that the displayed periodic orbit is an admissible repre-
sentative of its equivalence class. The symmetry of the
Hamiltonian chart of Fig. 3 with respect ta=0 is then
associated with the fact that this chart displays all elements
of an equivalence class, including nonadmissible periodic or-
bits. o _ ¢=@j_1+2aj 1+ mj=M+1...N-1, (16

Finally, because an admissible mapping sequence does
not necessarily generate any periodic orbit, Table | displays a
third column(occurrencgto be later commented when the aj=aj_q, (17)
catalog is presented.

1
sinwj:r[—sinaj—d coge;taj)], j=0...M=2,

(13

sinay=—rsSinwy_1+dcog oy—ay), (15

_ _ Po=@n-1T 2ay-1t T, (18
G. Basic equations
We call “basic equations” the equations, for periodic or- _

bits, which concatenate submappirgg and M, equations @0T AN-1»
for a given mapping sequence. In this paper, we shall only
deal with basic equations for adm@ssible mapping 'sequenceg which we conveniently dropped the symhaoin Egs.(16)
[see the example of Eq10)—(19) in the next sectioh In  and (18), see Eq.(2), with ¢ being understood modulom2
principle, basic equations then allow one to determine allfor applications, recall, however, thate [0,277]). Also, we
periodic orbits associated with a given admissible mappingsolated theMth mappingM; in Egs. (13)—(15) for later
sequence. In practice, solving a set of basic equations is intonvenience.
possible, excepted for simple special cagavall values of Using iteratively Eq(10) for j=0, Eq.(12) for j =0, Eq.
the periodN). Basic equations are then better used to validatg10) for j =1, Eq.(12) for j=1, . . ., ending with Eqs(13),

(or rejec) candidates of period orbits detected in a previous(15), and using Eqs(17), (19), we establish
step(Sec. llI).

(19

H. Derived equations for admissible mapping sequences Mt
0...01...1 COS(‘PO“‘CYO):—COE{‘PM_CYO)—El [cog i+ )
An admissible representative is determined by two initial
values ¢y and «g, therefore, requiring two equationiex- +cos ;i —«a;)]. (20
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Next, from Eqs.(16)—(19)

em= o~ (N=M)(7+2aq). (21)
Using Eq.(11) and a recurrence technique
i-1 i-1
¢i—ai=@otagt?2 2 wj-l—z aj, i=1...M-1,
i=0 =1
(22)
from which we also have
i-1 i
pitai=gotapt2| X, o+ aj|, i=1...M—L1
i=0 =1
(23
Equation(20) then becomes
Cos o+ @) +cog g~ ag— (N—M)(7+ 2a)]
M-1 i—-1 i—-1
+ E [Co{goo-l—ao-i-Z 2 wj+2 aj”
=1 i=0 =1
i—1
+cos{<po+a0+2 2 w,+2 aJ) ’ 0, (249
i=

PHYSICAL REVIEW B5 016212

. r{l
=arcsin —
.

—sina;—d CO{ @0t ag

ji—1
+22 ; +2Z a,)“ (25)
aJ-H:arcsir{ —rsinw;+d cos( @ot+ ag
i i
+220 w+2> ai)]. (26)
i= =1

In deriving Eq.(20), we had to divide byd, therefore,
dismissing the casd=0 (integrable system In the sequel,
this equation will be conveniently called the first equation
(FE) for the mapping sequence under study.

For the second equatidiSE), we invoke Eq.(14), which
has not yet been used, and establish

M-2 M-1
wp_1+ ag+(N— M)( +a0)+z w1+2 a;=0,
(27

to be complemented by the following readily establishedwhich (with ¢ understood as being modulorRis to be

equationguse a recurrence techniguéor j=0...M—2

rsinwy_1=-—sSinay_,—d cos{

= —sinay+dcog ¢p—

In Eqg. (28), we have two variants to evaluate,_,. The
best variant to be chosen, before insertion into ), may
depend on the mapping sequence under study.

I. Derived equations for arbitrary admissible mapping
sequences

Mapping sequences of the fortn. . . 01 1 previously
considered, may be symbolically denotedPa$ ,, in which
M;=M designates the number of symbols 1 dng=(N

—M) designates the number of symbols 0. Arbitrary admis-

understood moduler. This SE is to be complemented by

M-2 M-—1
oot ao+2j§=:o cz)]--FZI_Zl Q;

ag— (N—M)(7+2aq)]. (28
|
i
Z (Pi+M,) (29)
with the conventiorRy=0, and the resulN=Ry . The FE

and SE for the present case may be obtained by generalizing

the procedure described in the previous section. Detailed

derivations are, however, too lengthy to be reported. Let us

only mention that, when writing the basic equations, we iso-

late

Pjr1—aj1=20jt@jtaj, j=Rg_1+M¢—1,
(30)

sible mapping sequences may then be symbolically denoted

asPyMy ...
we introduce the notation

P>M,P1M 4, in a similar way. For further use, which is to be used to establish the SE.

For the FE, we then obtain
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Mi—1
—cos(cpo+ao>={cos<<pml—aMl>+ 2, [codgp, it ary:i)+C0t gr, i~ aryii)]

PlMl

M1
+{ codgr, + ar ) +COL @R +n,~ @R +m) t 2 [COL@r it ar i) FCOL QR i~ aR +i)]

=1 P,

Mg—1
+{aﬁ¢%+a%%Hmi¢%M%_a%+W%%2;[uﬂ¢%ﬂ+a%+ﬂ+aﬁ¢%ﬂ_a%ﬂn

P3Mg
Mg 1

ook codgr  Far ) o0t er, im ~aR o)t 2 [C0SgR it ar )
+C05(€0RK1+i—CYRK1+i)]] , (31

PxMy

in which each term of the forrr{}pjMj is specific of the  with (¢y,—ay,) and ay, available from Egs(32) and

partial sequenc®;M; in the mapping sequence. (35), respectively. We also have
We also have, for thé¢}p v term

i—1 i—1
2 le+j+2 aRﬁj}’
j=0 =1

@R, +i~ @R +i=(@r T ar ) +2
@i A= QR+~ AR = ¢Potagt2

j—1 j—1

2 0)|+2 ai:|,

1=0 =1
i=1...M,, (37)

j=1...Mq, (32

i—-1

-1 j Zo “Ryt
wi+-§5 QJ, j::1...hﬂl. =

0 i=1

(33

@R, +itar +i=(@r tar ) +2
()Dj+aj:g00+ a0+2

i
+j§laRl+j, i=1...M,, (39

Note that, in Eq(33), we only need up to (M;—1) for
insertion in the{}lel term of Eq.(31). It is, however, a fact (1 _
that Eq.(33) also holds fofj =M, . Similar remarks will also le=arCS|r{F[—smaMl—d cos @R, + aRl)]] ,» (39
be valid in the sequel, but will not be repeated any more.

Egs.(32—(33) are complemented by: NN arcsifi —r sin wr +j-17F d cog PR, +j T “Rlﬂ')]’

1 I
wjzarcsir{F —sinaj—dcos(go0+ao+22 ; j=1...M,, (40
i=0
j (1 .
+23 ai) ] i=0...M,—1, (34) W, +j=arcsin —[ —sinag, ,;—d cos ¢p,+
i=1
-1 +aRl+j)]], j=1...M,~1. (41)

aj =arcsir{ —rsinw;_,+d cos( @0t ag+ ZiZO wj
For higher—ordel{}Pij terms, excepted for the last term
i=1...M (35) {}pKMK, which will receive a special treatment, we use
) - - 1-

j—1
+22 ai)
i=1

er tar =(Pr . +m —@r _.+m )T Ppm
For the{}PzMz term, we use n n n—1"Mn n—-1TMp

+2(Ppt+lag 4w, N=1...K-2

er, T ar =(em,—an ) +P17+2(P1+1)ay,, (36 (42)
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i—1
|1 .
@R +i—ar +i=(gr Tar )+2 jgo WR +] wRK—lzarCSIr{F[_SInaRK_2+MK_1
i-1
+> ag ¢jl, N=0...Rx o, —dCOS(qDRK71+aRK71)] ' (52)
=1
i=1...M,41, (43 AR+ T AICSIA—T SiNwR, _ +j1
i1 tdcoser, i~ ar 4] (53

er +itar +i=(pr tar )+2

jzo WR, +j

1o
OR, |+ :arcsn{;[—sm R, 4] —d COS((,DRK71+j

i
+121 aRn+j , n:O...RK_z,
+aRK1+j)]]’ J:].MK_]., (54)
i=1...M,.,, (44)
1 PRy +M T~ AR, +M, = Po~ Pum— (2P +1)ap.
an=arcsir{F[—sinaRn_l+Mn—d cos{chn+aRn)]], (55

(45) Finally, starting from Eq(30), we establish the SE read-
. . ing as
aRn+j=arc3|rﬁ—r Slann+j_1+d COS((,DRn+j—aRn+j)],
20, +m-1T2ar, im -1 (PR, +M, -1
jzl...Mn+1, (46) K—-1 K K—-1 K K—-1 K

L —ar, +m-1) " @ot P+ (2Pc+1)ag=0,
anH:arcsir{F[—sinaRnﬂ-—d COS @R + | (56)

in which all terms may be explicitly expressed versysand
+ aRnﬂ')]] , J=1... My~ 1. (47) ag by using previously established formulas and in which, as
in some previous cases, the exact modulo determination to

As previously mentioned, the last ter{rﬂlpKMK requires a be used may need to be adjusted.
special treatment. This is due to the fact that E2f) has

been isolated to generate the SE. The choice, for this isola- Iil. DETECTION, VALIDATION, AND CATALOG
tion, is due to the fact that Eq30) appears near the bottom OF ADMISSIBLE REPRESENTATIVES
of the list of basic equations. We then establish A. Detection and validation
or. tar =(¢r .M. .—OR. -+m. )FP_1m Let us consider arbitrary initial conditionsf ,«,,) in the
KoLt Koz T e e phase space and thdilth iterate ¢, n,an.n). Let us in-
+2(Pk_1t+)ar, .+m. . (48)  troduce
K-2 K-1
i—1 Aa(N)=a,n—an, (57a
@ i—a i=(¢ tag, )+2 > o -
Riea TRt R T TR 7 e PR Ag(N)=@nsn—¢n, Mmodulo 2. (57b)
i—-1
. We also introduce a distand® defined as
+j§l aRK l+j:|7 |—1...MK,1, . , . , ( )
D(N)= N)“+Aa(N)~. 58
49) (N)=A¢(N) (N)
i1 Under these circumstances, according to @4, the ini-
_ tial conditions (,,«,,) generate a periodic orbit of peridd
i+ = + + i . oy n :
PRyt T ARy = (PR Far ) F2 JZO “Rg-1+] if and only if D (N)=0. We then developed a graphical
: software displayind (N), for N given, in a grayscale fash-
S 21 M.—1 ion, with darker zones corresponding to smaller valueB of
+J—=1 ARe_y+jfr T4 MkT L and with aD,,, value defining the grayscale levels. Scan-
ning over (@, ,a,), we then obtain grayscale charts, called
(50) distance charts displayed, fobi=1, . .. ,6,with D=1, in
_ Fig. 4. There is a fast increase of the complexity of the charts
FRy 1~ FRy_p+My_y (51 whenN increases.
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inclusion-touching periodic orbit. Therefore, for each de-
tected candidate, the exploration of the distance charts pro-
vides us with a coupled,,,«,) of initial conditions gener-
ating the periodic orbit, by using successive zoomsRpg,
distance decreases. Note, however, that the couglea(,)
is not necessarily the couplerg,«p) of an admissible rep-
resentative of an equivalence class.
For any(¢, @), and a presentl, the software allows one,
in a secondary window, to visualize the associated piece of
trajectory, in the physical space of the annular billiard.
Therefore, any candidate generated by the initial conditions
(¢n,an) may be visualized too. However, this visual obser-
vation is not sufficient to validate the candidate because, in
practice, numerical limitations prevent us from decreasing
FIG. 4. Distance chart foN=6, D =1 D max down to altitude Qwhich is, therefore, never reached
and because the vizualisation is limited by pixel resolution.
Visually, these charts exhibit a fairly good symmetry with Therefore, once a candidate is detected, it has to be validated
respect toa=0. This symmetry is the consequence of the(in practice, we essentially limited ourselves to the validation
time reversal symmetry associated with reversals of mappingf an admissible representative in the equivalence rlass
sequences. The symmetry is, however, not perfect, becau¥@lidations are carried out by using the algebraic expressions
the distance charts in Fig. 4 are fbr,,,,#0. For D=0, Of the basic equationsSec. Il G or of the derived equations
the symmetry would be perfecas it is in the Hamiltonian (Secs. IIH and I1). These algebraic expressions may be in-
char). vestigated by using algebraic solviiligy hand, or with the
To detect candidates for periodic orbits, in a distance char@ssistance of an algebraic solver from a symbolic computa-
for period N, we, therefore, have to explore the grayscaletion softwarg or numerical solving. In the last case, we used
landscapda rather lengthy procedure whéhis large. This @ numerical solver having the two following properti€g:in
exploration is carried out by a combination of zooms andgeneral, the solver only computes a single real rGotthe
decreases of nomind@,,,, distances down to altitude zero. solver may fail to find a root even though there is one: in
Periodic orbits are then located at the bottom of wells. ThesgUch a case, specifying appropriate range information may
wells may be much elongated as already apparent in the digesult in a successful computation.
tance chart, folN= 1, displaying two wells associated with ~ Accounting for these specifications, the strategy for vali-
two different inclusion-touching periodic orbifand for (N dation by using the numerical solver is as follows. Appropri-
=1) with two different equivalence classes, each equiva@te ranges are always used, either relying on measuring
|ence C|ass Containing 0n|y one e|em:bnt angleS ona dra.Wing of the Candidémis may be SuffiCieI)I
Distance charts exhibit inclusion touching and non-Or by using accurate locations measured on a distance chart.
inclusion-touching periodic orbits. As previously mentioned, Successful computations, therefore, validate the candidate.
we are only interested in inclusion-touching periodic orbits.Unsuccessful computations, conversely, are not sufficient for
However, there also exist grazing periodic orbits that may béejection which then, could only be reliably based on analyti-
simultaneously viewed as inclusion touching and as noncal arguments. However, in practice, ambiguous cases have
inclusion-touching periodic orbits. Referring to the hitting Not been met.
condition of relation(1), grazing periodic orbits exhibitl,
mappings for whiclr in the left-hand sidélhs) is just equal
to the quantity in the right-hand sidehs). Accordingly, all
inclusion-touching periodic orbits are found to be isolated The system under study exhibits temporal symmetries,
(this means with isolated locations in the distance gtet  namely, time translational invariances and time reversal in-
cepted for grazing periodic orbits that are connected withvariance(equivalence of mapping sequences through shifts
non-inclusion-touching periodic orbits. Due to the rotationaland reversa] leading to the definition of equivalence classes
invariance of the circular billiard, non-inclusion-touching pe- of periodic orbits. It also exhibits a spatial symmetry,
riodic orbits are not isolated. They appear on continuousiamely, mirror symmetry with respect to the axig Fig. 1).
lines (KAM curves). These lines, similarly as in Fig. 3, may As a result, there exist two kinds of periodic orhits sym-
be located at the top and bottom of the distance clilmtge  metrical periodic orbits that intrinsically exhibit the mirror
|a|'s) and, forN large enough, would correspond to genuinesymmetry andii) nonsymmetrical periodic orbits that must
morphology-dependent-resonances, i.e., to genuine whispesecur by pairs, the mirror symmetry then relating the two
ing gallery modes. They also may be located at smaller valeompanions of the pair.
ues of|a|, and then are not genuine MDRs, because they The catalog, given in Fig. 5, gathers symmetrical admis-
allow refractive escapdsike 2 (1) 2 in the catalog with the sible representatives fd¥ from 1 to 6 and nonsymmetrical
inclusion removed admissible representativésnly one companion in a paifor
Then any inclusion-touching periodic orbit, including any N=1 to 5 (with a single admissible representative for each
grazing periodic orbit, is isolated with respect to any otherequivalence clags

B. Catalog
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N=3
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N=4
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N=6
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-0.902 959 240), S
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0.094 007 511), 8

©

@o
4402

(0.470 242 561
-0.147 G08 305), NS

Y

6(2)1
(2.617 993 878,
0.523 598 776), S

R

6(5)1
(5741385 575,
-0.541 799 732), §

o

AN

6(8)2
(6.087 850 867,
-0.195 334 440), S

@o

6(10)1
(0.014 073 623,
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N=5
@
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@
5(3)2

(1.361 426 907 ,
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<

54)3
(5.421 086 079,
-0.454 155 2750), NS
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5(6)2
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0.545 527 475), S
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-

6(3)1
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6(10)2
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512
(0.534 774747,
-31/10), NS

<&

5(3)3
(0.111 237 891,
-0.815 171 990), NS

<

5(5)1
(0.008 885 611,
-0.780 955 358), S

S%

5(6)3
(3.897 699 492
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6(4)1
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o

6(712
(1.303 984 071,
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X

6(8)4
(0.531 358 860,
-0.158 387 326), §

P

6(11)1
(6.066 416 984 ,
-0.216 768 323), S

531
(0.420 936 746,
-0.906 885 303), S

5(4)1
(0.686 800 743
-0.087 462 828), S

o

5(5)2
(5.718 252760,
-0.586 528 245), NS

FIG. 5. Catalog of admissible representatives of periodic orbits.
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Validations of all these representatives require a consider- ¢c_o©
able amount of algebra and are sketched in the Appendix A
Obviously, symmetrical representatives exhibit extrarela- ® R ? (B -
tions, called symmetry relations. These relations allow one ta 'Y v V X X
simplify the algebra and, very often, it is possible to reduce U co \Q%

the set of two equations foke(, a) to a single equation for
ay. Examples of symmetry relations are E¢&35)—(A40) (d=r)
for the orbit 5(4) 1 (see, the Appendjx Extra simplifications * b ¢
may also occur when the orbit under study is degenerate, FIG. 6. Research of periodic orbits with mapping sequences 11.
leading to extrarelations called degeneracy equati@es. (@ and(b): opportunities(c) actual occurrences.
D).
The catalog contains one admissible representative fdp Figs. @a) or 6(b) (opportunities. In both cases, we have

each detected and validated equivalence class, with a labeltBe Symmetry relations

for the initial point (¢o) and an arrow of timésign of «), = an=0 (59
generating an admissible mapping sequence. Each represen- e
tative receives a name having the expresstoiB) C in ©1=— g (60)

which A (B) is the label of the mapping sequen@able )
andC is an ordinal positive intege(d, 2 .. .) allowing one  and, depending on the case
to distinguish different admissible representatives having the

same admissible mapping sequence. For a given kalfB), (68 @1=7— g, (61)

the value ofC for any symmetrical orbit in the catalog is

smaller than for any nonsymmetrical orbit in the catalog. In (6b)  @1=37—¢q. (62)
particular, this ensures us that the names of the symmetrical

periodic orbits of the catalog fdd=6, would not be modi- Then, we write the basic equations for the mapping se-

fied if this part of the catalog were extended to nonsymmetriquence 11, and implement Eq89) and (60). In case(6a),
cal orbits. Afterward, we provide the valueg{, «,) defin-  we obtainr/d=—1, which is impossible. In caseb) we
ing the initial point 0 and, finally, a labed (NS indicates conversely obtaim/d= 1. Therefore, the mapping sequence

whether the orbit is symmetricahonsymmetrical 11 is forbidden ifr#d. If r=d, we obtain the picture
sketched in Fig. @) with a tangency between the inclusion
C. Occurrences of equivalence classes and the axis 8. Simple geometrical considerations demon-

strate that periodic orbits with sequence 11 indeed exist when

We observe that all admissible mapping sequences al€_ 4. Furthermore, in agreement with the solutiond, we

actual_ly not presentin thed_catlalog d Qc::hurrle n(t:es IOf admfls:rsmk))l ay geometrically check that the valueg@f does not matter
mapping sequences are displayed In the fast column of fabi ¢, aspg e[ m,27]. For o= 37/2, we recover period-one

'I&S'n. Véh'c?’;g each adm|ss]!ble maptplngl sequencte,t_a Iape rbits previously described. Period-two orbits with sequence
Indicatesa occurrences of symmetrical representatives 'nll, therefore, generically do not occur, i.e., they only occur

the catalog and a label ANS indicatéccurrences of non- for r=d and an infinitesimal perturbation from this solution

symmetrical pairs of representatives in the catalog. makes them forbidden via what we may call an abrupt bifur-

ForN=6, two admissible mapping sequences do not 9eNzation.

erate any representative in the catalog but recall that, for this In principle, such approaches should allow one to inves-

\galurtla of tthle pegodL nokri\rs]ymrg(ra]:?c?glper:odlrc orlrjllttstiCave n?ﬁ'gate lacking equivalence classes, i.e., equivalence classes
een calajoged. Lacking admissible represemtatives, aNfhy; g ot generate any actual representative, in order to

tj](;reforg, Ilacklng equwalianckg classgs, | also alppealeor | etermine how such a lacking property might depend on the
=2 ...5. Insome cases, lacking equivalence classes could .., parameters.

possibly exist for (_)ther value.s of the control parame@bes, In the same spirit, we may observe, for control parameters
d#0, 5,r#0, 39 in connection with the thema of bifurca- it~ ant thand=0. 5. r=0. 35 a periodic orbit having the
tions of periodic orbits. In other cases, the lack of equiva-¢, o structure thém7our(a’) 1 ,in Ref.[13], and a periodic

lence classes could be deeply structural, i.e., independent Blpit having the same structure than o 1 in Ref.[14]
the control parameters. This thema of occurrences of equiva- e

lence classes is not extensively investigated in this paper but
we shall study, as an example, the case of the admissible
mapping sequence 11. We introduce several cases of degeneracy, starting with
A periodic orbit with mapping sequence 11 must startdegeneracy with respect to phase space coordinates and af-
from a pointA on the host circle, impinge on the inclusion at terward, ending with degeneracy with respect to control pa-
B, reaches the host circle & (first M; mapping and go  rameters.
back toA following the reverse patfsecondM; mapping. A periodic orbit isa degenerate iff one or severals in
Therefore, the normal to the inclusionBimust be an axis of the sequenced,a;  ayn-_1) iS zero. In the catalog, the
symmetry. Since 9 is the only axis of symmetry available, following representatives awedegenerate: 11) 1, 1(1) 2, 2
periodic orbits with mapping sequence 11 can be as sketchdd) 2, 5(4) 3, 6(8) 1, and 6(8) 2. Eacha degeneracy implies

D. Degeneracy relations
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a relation, i.e.;=0 for somei, which is a degeneracy re- of 2N=12. These elements are clearly exhibited in the
lation. Hamiltonian chart of Fig. 3we shall return to them later

A periodic orbit is ¢ degenerate iff some’s in the se- Furthermore, the number of occurrences for a nongymmetri-
quence (o, ¢1...¢n_1) identify. In the catalog, the follow- Cal equivalence clerss may'be thought as pelng twice Iarger
ing representatives agedegenerate: £) 1, 5(4) 3, 6(2) 1,  than for a symmetrical equivalence class since the detection
6 (8) 1, 6(8) 2, 6(8) 4, and 6(10) 2. Eache degeneracy ©f a perlodlclorb|t ina palrllmplles the existence of its com-
implies a relation, i.e.¢;= ¢; for somei and somg, which ~ Panion, leading to Kl detection opportunities in a nondegen-
is a degeneracy relation. erate case.

« degeneracy ang degeneracy are two different kinds of ~ Next, periodic orbits of perio@ in a p-distance chart also
degeneracy. This means that a periodic orbit can degen- ~ occur under the form of periodic orbits of peridg (k a
erate and nop degeneratgfor instance, (1) 1] and that an  positive integer in a kp-distance chart. Finally, there is no
orbit can bep degenerate and natdegeneratgfor instance, universal strategy to explore a distance clidepending for
4 (2) 1]. However, an orbit can bee degeneratg5 (4) 3, 6  instance on the complexity of the chabut zooms and sub-

(8) 1, 6(8) 2]. zooms are used. Therefore, a periodic orbit, for a distéhce

A degeneracy relation can be a symmetry relation. In suclpot too close to zero, may be detected on several subzooms
a case, the degeneracy relation is a consequence of the symhen the wells surrounding the associated point of altitude
metry of a symmetrical orbit. For instance, in(1) 1, the zero are elongated enough.
a-degeneracy relatioay=0 is a symmetry relation. Also, in Next, the methodology used to detect equivalence classes
6 (8) 4, the ¢-degeneracy relatiop,= ¢, is a symmetry does not allow one to pretend to full exhaustivity. However,
relation. Conversely, the nonsymmetrical representatitd 5 to miss an equivalence class, we have to miss all elements of
3, for instance, exhibitap-degeneracy relations that are not the class. Since many opportunities are offered for the detec-
symmetry relations. Degeneracy relations that are not symtion of an equivalence class as described above, the probabil-
metry relations provide extra relations that may lead to easieity for exhaustivity is certainly very close to 1.
validations of the detected representatives.

Degeneracy may also be defined with respect to control F. Grazing periodic orbits
parameters, and taken as the definition of structural stability
of the periodic orbit under discussion. By definitiathde-
generacy means that we may continuously change the val
of d, without destroying the periodic orbit.

In the annular billiard, first locate a periodic orbit of the
Lﬁircular billiard that(if possible does not interact with the
Inclusion. Then, keeping the inclusion at rest, rotate the host
For instance, the orbits @) 1 and 1(1) 2 ared degener- circle and its attached periodic orbit until the orbit just touch

ate. Ifd=0, we also possess two extra-period 1 orbits along€ inclusion(if possible. This process, when it works, gen-

axis x. These orbits, however, are nbdegenerate. Estab- erates a_grazing. periodic orbit of the annular billliar_d. .
lishing a d-degeneracy usually requires specific investiga- The circular billiard does not possess any periodic orbit of

tions. period 1. Accordingly, there is no period-1 grazing periodic

Furthermore, by definition; degeneracy means that we orbit (ca_talog of Frg 3 ForN=2, consider a.periodic orbit
may continuously change the value rofwithout destroying of the circular billiard(a diametral chord which does not

the orbit. Also, establishing degeneracy usually requires }_OUCh the incll(usri]on, k‘:‘?r ints)ra_nce,_ aligned .a'?]”g thle axs Oh
specific investigations but, as a sufficient conditionfare- L€t US remark that this orbit impinges at right angles on the

generacy, we have the nullity of al's. According to this host circle @, = ap=0) and, therefore, is not a MDRlue to

sufficient criterion, here is a list afdegenerate orbits; @) ~ 'efractive escapeA rotation then may generate the represen-

1 and 1(1) 2 with wo=0, 4(2) 1 with wy=w,=0, and 6(2)  tative named 21) 2. . . .

1 With o= ws=0. .For N_= 3,4, and 6, we@rd not obsgrve any grazing peri-
odic orbit of the annular billiard. Invoking the rotational sce-

nario described above, we should be able to determine

whether such orbits are forbidddéfor d=0.5,r=0.35 or

Let us consider an equivalence class of pefibdith the  whether they have been missed during the exploration of the
representative in the catalggnd, therefore, all periodic or- distance charts.
bits in the equivalence claswithout any degeneracy with For N=5, we have candidates based on pentagons in-
respect to phase space coordinates. This class must odcur Zcribed in the circular billiard. Such pentagons may surround
times in the phase space and, more importahktitnes in  the inclusion and, upon rotation, become grazing. The proof
the distance chafiN possible values fop due to time shifts is by displaying an example, namely, the representati¢® 5
and two possibilities for due to time reversal invariance 2 in the catalog.

We say that the occurrence iN2in the (¢, @) plane. The interest of a focus on grazing periodic orbits is, there-
Degeneracy with respect to phase space coordinates dfsre, warrantedand postponed to a future work et us here
creases the number of occurrences in thea) plane. For  remark that, for a given admissible mapping sequek(d),
instance, the equivalence class of2 1 contains onlyN grazing periodic orbits in the catalog received the largest
=4 elementgsince there are only two distinct impacts on integerC in the namesA (B) C. Therefore, grazing periodic
the host circlg instead of N=8 and, similarly the equiva- orbits that would possibly be missed could be added in the
lence class of §2) 1 contains onlyN=6 elements, instead catalog without any inconvenience.

E. Occurrences in phase space, and exhaustivity
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FIG. 8. Stable orbit 4) 1 after 16 iterations. Initial conditions
FIG. 7. Orbit 2(1) 1 after 30 iterationgunstable. with three decimal digits.

G. Stability visually unchanged even after 100000 iterations. A slight
broadening may be observed, after 100 000 iterations, when
the initial conditions are taken with three decimal digits, with
an example in Fig. 8.

The degenerate stable equivalence classes of the represen-
tatives 4(2) 1 and 6(2) 1, having four and six occurrences in
the phase space, are well visible in the Hamiltonian chart of
Fig. 3 where they generate islan@&AM curves surrounding
the elliptic points of the stable orbjtsThe islands associated
with 6 (4) 1 can be detected after a zoom around the orbit
locations. These islands are immersed in the chaotic sea gen-
erated by the unstable orbits.

Once a periodic orbit is determined, it is important to
know whether this orbit is stable or not. Here, following
Berry [5], a periodic orbit starting from original canonical
(i.e., area preservingvariables(s, p may be stable or un-
stable in the sense that an orbit starting &t ¢s,p+ dp),
where §s and dp are small, may after many impadisn the
host circlg remain near the periodic orbit generated(byp
or may deviate increasingly from it. For a peridbderbit,
after N iterations,s and p return to their initial values while
the deviations of the nearby orbit starting frora+dp,p
+ 8p) become sy, dpy) with

) s
( N): N( ) (63) H. On resonances

OPx op MDRs in the circular billiard share two propertiés they

_ . . are in resonance, that means they are periodic orbits with a
with My being a 2<2 matrix. LetT be the trace of the phaqe matching condition aril) they do not escape refrac-
matrix My . Then, the periodic orbit is stableinstablé  ijyely. A periodic orbit of the circular billiard is not neces-
when |T[<2 (|T|>2) [4,5]. It is marginally stable fofT|  garily a MDR (a resonandesince the second property is not
=2. More generally, the stabilityinstability) of a periodic always satisfied. For example, the periodic orbil22 is not
orbit implies the stability (instability) of the associated 4 MDR since the incidence angle on the host circle leads to
equivalence class. o refractive escape in an extended light scattering problem.

Relying on this formulation, it can be demonstrated that Tpe presence of the inclusion destroys a set of MDRs of
the periodic orbits 1(1) 1 and 1(1) 2 are both unstable. the circular billiard and, in turn, generates new periodic or-
Another way to proceed is to iterate a large enough numbe&gits that may be resonances. The investigation of this issue,
of times and to graphically examine the behavior of the orbity yych importance for electromagnetic scattering problems,
in the annular spacéhen avoiding lengthy and tedious al- g postponed to a future work.
gebraic evaluationsin this paper, we shall be content to use |hwitively, we also expect that stable periodic orbits are
this more expedient method for periobis>1. of particular significance in light scattering problems. The

All orbits of the catalog(excepted grazing orbitshave  examination of this expectation is another opportunity for
then been tested, starting from the nominal values given ifytyre work. In particular, it is intuitively expected that the
the catalog, with nine decimal digits. Since these nominakiaple orbits 42) 1 and 6(2) 1 would provide specific sig-
values are actually rounded off, they correspond to nearbyatyres in the scattering diagrams, whilé4é 1 would sig-

orbits with smallés andép. nificantly contribute to the structure of the internal electro-
For unstable orbits, instabilities are always apparent aftepagnetic fields.

a small number of iterations, say 30, as exemplified in Fig. 7

and, after 1000 iterations,_the annular space is essentially V. CONCLUSION
blackened. Only three equivalence classes have been found
to be stable, with admissible representative®)41, 6 (2) 1, Periodic orbits in the annular billiard have been studied

and 6(4) 1. In these cases, representatives are essentialfpr specific values q,r)=(0.5,0.35) of the control param-
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eters. A catalog of periodic orbits has been built relying on a 3(2)1

two-step process. In the first step, candidates for admissible \ye yse basic equations and implement symmetry rela-

representatives of equivalence classes of periodic orbits akgyns (implying o= 27+ ay), leading to a single equation
detected by exploring distance charts in phase space coordyy o, which is numerically solved.

nates. In a second step, these candidates are validated

rejected from the analysis of the admissible mappings gen- 3(2) 2

erating them. Interesting issuégazing periodic orbits, ana- Derived equations for the type 011 are numerically
lytical studies of stability, bifurcations under a change of thesolved.

control parameters, properties of resonances created by the

inclusion are briefly considered, with more systematic in- 4(1)1

vestigations postponed to future works.

Beside the intrinsic interest of this work in the field of
Hamiltonian chaogin mechanical languageor of optical
chaos(in geometrical optics languagewe have a strong
motivation for the associated extended electromagnetic scat- 421
tering problem. _ ) i ) .

It is expected that features exposed in this paper would Beside symmetry relations, this orbit exhibits degeneracy

form a skeleton for electromagnetic wave interaction. A sig-rEI"Jltlons (such asw;=wo=0), which simplify the basic

nificant issue is related to the existence of new MDRs in theequatlons, allowing one to proceed with *by-hand” algebraic

case of a sphere with an eccentrically located spherical inc_:omputatlons.
clusion. More generally, an effort devoted to these issues 441
might contribute to the understanding of light scattering by

nonhomogeneous spherical particles, and to optical charac- USing derived equations for the type 0111, using symme-
terizations of such particles. try relations, and by invoking th#1, map involved in the

mapping sequence, we show thgi=27+ ay. We then ob-
tain, from the FE, a single relation to determimg, which is
numerically solved.

We use basic equations, implement symmetry relations,
show thatpy=47+ 3«aq, and establish a single equation for
ag, Which may be solved with an algebraic solver.

APPENDIX: VALIDATIONS OF ADMISSIBLE
REPRESENTATIVES OF THE CATALOG 4(4)2
This appendix presents the validations of the detected ad- We use derived equations for the type 0111, and solve

missible representatives of the catalog. This represents a COumerically.

siderable amount of algebraic work that cannot be exposed in

detail, even in an appendix. Therefore, most often, we only 5(1) 1

provide concise indications. More details are provided for a . .
chosen set for their illustrative virtue, particularly in the case We use derived equations for the sequence 00001, and

N=5, which exhibits an intermediary level of difficulty. Let write down the FE and the SE. Then, we write down the

us remark that, for a given representative, there are usuall%aSIC equations for thél, maps involved in the mapping

several validation strategies available. We cannot preten Sg:etgcgé bueslgg C;rzgflglh\év\:\thvf/ri]ti tef:(:C.gtlic:ng](‘thjll’]Oe dsetrirr;né?ra'
that a chosen validation is necessarily the most effidieg relation ¢, = - ) that ' y y
would require the examination of all options and would un- 17T ¢o
duly extend the algebraic burden 3.
(,00:4CYO+ 7 (Al)
1(1)land1(1)2

Easy algebraic validation “by hand,” by using thd

mapping, with ¢p1,a1) = (o, o).

We then observe that E§A1) makes the FE being an
identity. We establish that the SE may be written as

Sin(a)o‘l‘ 5ao):0, (AZ)
2(1)1 _
We use derived equations for the type 01. An algebraicWlth
solver (symbolic computation softwarecan deal with this 1
case. w0=arcsirh[—sinao—d sin(5ag)] ¢, (A3)
2(1)2 and use a numerical solver.
This representative satisfiesy=0, wy= 7/2, making the
FE for the type 01 becoming an identity. Then, return to 512
basic equations which, witlx,= (=0, wy= /2, readily This orbit is a grazing orbit that is obtained by drawing a
determinegq, “by hand” computations. pentagon in the host circular billiard, and rotating it until it
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just touches the inclusion. This geometrical observation alEquations(A9)—(A13) then reduce to a single equation for
lows us to use a particular procedure to validate the orbit. Wey,,
write down the basic equations for tivd; map involved in

the sequence. Next, we have a grazing condition cos4ap+2wg) +Ccog4ap+2wo+2a,)=0, (A18)
™ 1

®o=> (A4) wo=arcsin —[—sinag+ dcog4ag)]{, (A19)

ggg two relations characterizing the geometry of the penta- a;=arcsii —r sinwg—d cog4ag+2wy)], (A20)

which is numerically solved. The different orbitg3) 1 and

@1= @0+ 2_77 (A5) 5 (3) 2 are then validated by using different appropriate
S ranges for the numerical solver.
a1=ag. (AB) 5(3) 3
Inserting Eqs(A4)—(A6) in the previous basic equations, ~ We numerically solve the derived equatioffs9)—(A13)
we readily obtain for the sequence 000Xho symmetry. The checking of ex-
act modulo determinations shows that E412) is changed
3 to
apg= — 1_0, (A?)
a
and dagt+ ai+ wpt == 7. (A21)
r=-—sinag—dcog ¢g+ agp), (A8) 54 1
which, after insertion of Eq(A7), may be solved with an We use the derived equations for the sequence 01011. The
algebraic solver. FE reads as
5@)1and5(3)2 —cog gt ag)=C0g ¢1— @q) +COL o1+ aq)

We use the same procedure for both. We write the derived

+cCo —ay)+COo +a
equations for the sequence 00011. Loz az) Leatag)

+cog @4— ay), (A22)

cog g+ ag) —COS og— 7ag) + COY @+ g+ 2wo+ 2a4)
+ oS g+ ag+2wg) =0, (A9) (p1—a@1)=@ot apt 2wy, (A23)
((P1+ a'l)=(p0+ ao+2(1)0+2a1, (A24)

1
wo= arcsir{—[ —sinag—dcog egt+ag)]f, (Al0)
r ((Pz_a’z):(POJF ao+2(1)0+2(1)1+2(1’1, (A25)

aj=arcsif —r sinwg+d cog g+ ag+2wg) ], 1
(Al1) wo= arcsir{;[— sinag—d cog @g+ ao)]] . (A26)
3
dagtartwotw == —-, (A12) a;=arcsif —r sinwg+d cog @y + ag+2wg) ],
(A27)

1
wl——arcsv{—r[—smao—dcos{goo—7a0)] . (A13) . arcsir{r[ sina; — d cos oo+ g+ 200 2a1)]],

We have the symmetry relations (A28)
w,=wg, (A14) ay=arcsifi —r sinw;+d cog ¢+ ag+2wo+ 2w+ 2a4)],
(A29)

P2= T~ o, (A15)
(3t az)=(p2—az) +4ar+m, (A30)

ar=ag. (A16)
(pa—ag)=¢o—3ap— . (A31)

We write down the basic equations for thl, maps(with

the exact modulo determinatipand establish The SE reads as

©o=3ag+ . (A17) @o—3ag—2w3—2a,— (@3— az)=r, (A32)
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5(5) 1

We use the derived equations for the sequence 00111,
implement the symmetry relations and, by using the Mgt
(p3—az)=(pr—ay)+2ay+ . (A34) map in the mapping sequence, establish thgt=2a

) ) ) + /2, leading to a single equation far,
The set may be solved with a numerical solver. If we imple-

1
w3= arcsir{;[ —sina,—dcog s+ as)];, (A33)

ment the symmetry relations SiN(3ag+2wg) +SiN(3ag+ 2wy + 2a1) +SiN(3agt+2wg
Pr=T— g, (A35) +2w1+ 2a1)+sin(3ao+ 2w0+ 2w1+ 4C¥1):0,
(A47)
¢4=37T— 3, (A36)
1
37 wozarcsir{—[—sinaoer sin(3a0)]], (A48)
e1=— (A37) f
aj=arcsifi —r sinwg—d sin(3ag+2wq)], (A49)
= ag, (A39)
1
= as, (A39) wlzarcsir{F[—sinal+dsin(3ao+ 2wg+ 2a1)]}.
w1= W, (A40) (A50)

then the FE becomes an identity. Under such circumstances, 502
we may return to the basic equations, implement the symme- We use the derived equations for the sequence 00111
try relations, and establish (same as in the previous casand solve numerically. How-

ever, let us remark that, in the previous case, the SE reads as
sinag+dcod ¢g+ ag)=(1+d)sina,, (A41)

Bagtaitartwytwitw,=—m, (AB1)
3
=5 ¢o~ ag—2wq, (A42)  while, in the present case, it reads as
3a0+a1+a2+w0+w1+w2=0, (A52)

1o
wo=arCSIf<F[—Slnao—d cog ¢p+ ao)]}y (A43) emphasizing once more that exact modulo determinations
may have to be checked. The most expedient way is to check
on the drawing of the candidate under study.

36!0_Q00+ wW3=— & (A44)

2 5(6) 1
1 For this case, we use the derived equations for the se-
w3=arcsirh[—sin ap—dcog g3+ ao)]] , (A45)  quence @111 andsolve them numerically. Another possibil-
ity is to also use the symmetry relations, invoke tkig
mapping involved in the sequence to expresgag) and

—2ap— @o+
¢3=2a0~ ¢ot2m, (A46) generate a single equation fag,.

in which Eq.(A41) is a FE and Eq(A44) is a SE. The set
may be solved with a numerical solver.

This example shows that there is generally not a unique Same as for §6) 1.
validation strategy. The first approach avoids extra-algebraic
manipulations required in the second approach but is numeri- 5(6) 3
cally about 100 times slower.

5(6) 2

We use the derived equations for the sequeridd D, and
solve them numerically.

5 (4) 2
We use the same derived equations than for the or{j 5 6(1)1
1, with a(—) modulo determination in the rhs of EGd32), The derived equations for the sequence 000001 read as
instead of a+ ) determination, and solve numerically.
COSQDOJF ao)_COiQDO_ 116!0):0, (A53)
5(4) 3
For this highly degenerate case, the SE becomes an iden- _.r
tity. Therefore, we return to basic equations, implement de- @ot b=+ 2’ (A54)
generacy relations, obtain two new derived equations, and
solve numerically. I sinwg= —Sinag—d cog ¢g+ ag). (A55)
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This example is interesting for two reasdisit exempli- 2 sinag+d[cog @o+ ag) + €O @o— 3ag) + coS @p+ g
fies once more that we have to be careful with modulo de-
terminations since the rhs of EGA54) must be(+/2) in- +2wp) +Cog pg—3apt+2w,)]=0, (A58)

stead of (—57/2), as would be obtained from a naive
interpretation of the derived equations &g symmetry re- (1
lations have not to be used to obtain simple enough equa- wo=—arcsin —[sinagt+dcod ot ag)], (AS9)
tions.

Equations(A53)—(A55) are better rewritten as

1
W= arcsir{r[sinaOJr dcogep—3ag)];, (AB0)

COS (,Do+ ao)—COS{ (,Do_llao)zo, (A56)

(A57) r sinwg—SiN(¢g— g+ wo+ wq) —d cog oo+ ag+2wg) =0,
(AB1)

r cog6agy)=—sinay—d cog ¢y+ ap),

which are solved numerically. which are solved numerically.

6(2)1

Due to symmetry relations, and the high level of degen-
eracy, this orbit is easy to validate, whatever the metho%s
used.

6 (8) 4
Same as for 8) 3, with new derived equations reading

sinay+d cog ¢g+ ag) +(1+d)cog oo+ ap+2wg) =0,

63)1
© (A62)

We use the derived equations specified for the sequence
000101, being careful with the exact modulo determination sjn ¢+ d coq ¢q—3a) + (1+d)cog ¢o—3ay— 2w3) =0,

for the SE, and solve numerically. The use of symmetry re- (A63)
lations is not useful.

1
6(4)1and 6 (4) 2 wo= —arcsir{r[sina(ﬁd coq oo+ ao)]], (A64)
We use the derived equations for the sequence 000011
with correct modulo determinations for the SE, and the sym- 1
metry relationw;= wq, and solve numerically. w3=— arcsir*?[sin ap+dcod ¢p— 3“0)]] . (ABY)

6(5) 1

The FE with symmetry relations reduces to an identity. 6091
Returning to basic equations, we implement symmetry rela- Same as 68) 3 with the new derived equations reading as
tions leading topg=27+ ag, and derive a single equation
for ag, to be solved numerically. Sinag+d[cog ¢p+ ap) + €O g+ @+ 2wp) ]

6 (7) 1 and 6 (7) 2 +(r—d)sinw; =0, (A66)

We use the derived equations for the sequence 000111,
with correct modulo determination for the SE, implement
symmetry relations to obtain simplified FE and SE, and solve

sinag+(d—r)cod ¢p—3ay) =0, (A67)

i 1
numerically. W= — arcsir{r[sin ag+dcog ggt+ ao)]] , (AB8)
6(8) 1
With symmetry and degeneracy relations, the SE becomes ~ a;=—arcsifr sinwg—d cos o+ ag+2wg)],
an identity. Basic equations, however, leaddg= 7+ ay, (AG9)
and to a single equation faty, to be solved numerically.
1
6(8) 2 w1= —arcsir{;[sinafl—d cog ¢t agt2wq+ 2d1)]] .
Same as for §8) 1, but with pp=27+ . (A70)
6(8) 3 6(10) 1

With symmetry relations, the FE becomes an identity. Re- We use derived equations for the sequencELQQ,imple-
turning to basic equations and implementing symmetry relament symmetry relations, check the exact modulo determi-
tions, we may deduce new derived equations nation in the SE, and solve numerically.
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6 (10) 2 6 (11) 1

We use derived equations for the sequencELQQ,imple-
ment symmetry relations, invoke the lalst, mapping to : . .
show thate,=2aq+ 5, and establish a single relation for MeNt Symmetry relations, invoke thé,-mapping to show
ao, possibly to be solved numerically. This periodic orbit is (N2t ¢o=27+ap, and establish a single relation for,
actually particularly difficult to validate. The most expedient POSSibly to be solved numerically. Actually, as for the previ-
way has been to determing, by trials and errors with a OUS case, we solvgd the equation by trials and errors, with a
symbolic computation software. symbolic computation software.

We use derived equations for the sequentElQ1,imple-
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