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Periodic orbits in Hamiltonian chaos of the annular billiard
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We consider the motion of trajectories in the annular billiard, constituted of a circle with an internal,
perfectly reflecting, eccentrically located secondary circle, displaying a generic Hamiltonian behavior~includ-
ing periodic orbits, invariant curves, and chaotic areas!. Periodic orbits embedded in the phase space are
systematically investigated, with a focus on inclusion-touching periodic orbits, up to symmetrical orbits of
period 6. Candidates for periodic orbits are detected by investigating grayscale distance charts and, afterward,
each candidate is validated~or rejected! by using analytical and/or numerical methods. This Hamiltonian
problem with Hamiltonian chaos~mechanical language! may equivalently be viewed as an optical problem
with optical chaos~expressed with a geometrical optics language!. It then may be extended to the study of
interaction between a laser beam~or a plane wave as a limit! and a sphere with an eccentrically located
spherical inclusion, this interaction being described by a generalized Lorenz-Mie theory recently established.
Inclusion-touching periodic orbits in the annular billiard may generate a new class of morphology-dependent
resonances in the associated extended generalized Lorenz-Mie theory problem.
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I. INTRODUCTION

Let us consider the interaction between an electrom
netic wave and a perfect homogeneous sphere and focu
attention on internal fields. Morphology-dependent re
nances ~MDRs!, also called whispering gallery mode
~WGMs!, correspond to solutions of characteristic equatio
associated with boundary conditions, and occur at resona
frequencies that are poles of field coefficients@1,2#. At reso-
nance frequencies, MDRs generate intense internal fi
which are concentrated near the rim of the scatterer and
activate a host of nonlinear effects, including lasing@3#. In a
geometrical optics~ray tracing! picture, MDRs are associate
with rays that undergo multiple reflections inside the sc
terer and without any refractive escape, upon resonance
isfy a phase-matching condition, corresponding to enhan
field intensities. Equivalently, we may view an equator
plane of the sphere as a mechanical billiard, defining
Hamiltonian mechanical problem. MDRs are then associa
with a class of periodic orbits~without refractive escape, se
complementary discussion in Sec. III H! of the Hamiltonian
problem expressed in terms of trajectories. This so-defi
circular billiard is integrable in the mechanical sense@4,5#
and, therefore, only exhibits periodic orbits, and invaria
curves in a phase space description~no chaotic area!.

The characteristic equations allowing one to predict re
nance frequencies do not depend on the illuminating be
This does not mean, however, that the structure of the
minating beam is irrelevant. Indeed, MDRs have to be
cited from outside, and, therefore, the coupling between
illuminating beam and the internal field is a key issue@6,7#.
The study of such a coupling may be achieved in the fram
work of generalized Lorenz-Mie theories~GLMTs! that de-
scribe the interaction between an arbitrary shaped b
~continuous or pulsed! and some regular particles@8,9#.
These regular particles must be such that Maxwell’s eq
1063-651X/2001/65~1!/016212~18!/$20.00 65 0162
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tions can be solved by relying on a method of separation
variables. We then say that we are facing an exactly solva
electromagnetic problem. An example of applications o
GLMT to MDRs is available from Ref.@10#.

Laser beam scattering by a sphere is an exactly solv
problem, leading to what is called the GLMT in the stri
sense~Ref. @11# and references therein!. As aforementioned,
the associated Hamiltonian billiard problem is integrab
Recently, a GLMT for a sphere with an eccentrically locat
spherical inclusion, with the inclusion being dielectric or pe
fectly reflecting, has been established@12#. Similarly, along
the same lines, a GLMT for a circular cylinder, with an e
centrically located circular cylinder as an inclusion, shou
be technically feasible@8#. In both cases, a restricted asso
ated Hamiltonian problem, with the inclusion being perfec
reflecting, leads to the annular billiard. This billiard dea
with trajectories in an annular space bounded by a host~ex-
ternal! circle, and an internal, perfectly reflecting, eccent
cally located secondary circle. In contrast with the circu
billiard, the Hamiltonian annular billiard is not integrabl
and leads to generic@5# Hamiltonian behavior, including cha
otic motion @13–16#. Therefore, we are facing the situatio
of a billiard that is nonintegrable while its extended elect
magnetic counterpart is exactly solvable.

Hamiltonian chaos in the mechanical language is ca
optical chaos in the geometrical optics language, and
been studied in the case of asymmetric resonant cav
~ARCs! @17,18# with interesting applications concerningQ
spoiling in deformed ring cavities and the behavior of lasi
droplets@19,20#. However, the electromagnetic problem a
sociated with ARCs is not exactly solvable.

A study of the annular billiard~with the extended electro
magnetic problem in mind! is then of particular interest be
cause this system simultaneously shares the propertie
nonintegrability and exact solvability. In particular, period
orbits are expected to provide specific signatures in elec
©2001 The American Physical Society12-1
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magnetic scattering features. In the case of three-dimensi
~3D! strongly dissipative systems, with chaotic attractors,
riodic orbits are all unstable, densely embedded, and pro
a skeleton of the attractor that may be characterized b
template and a population of periodic orbits, leading to
topological characterization~Refs. @21–23# and references
therein!. Any trajectory in the chaotic attractor has a rec
rent behavior and shadows any periodic orbit, during fin
intervals of time. The determination of the periodic solutio
then happens to be equivalent to the knowledge of all s
tions.

Similarly, the knowledge of periodic solutions is of u
most importance for a Hamiltonian system. However, in c
trast with dissipative systems, periodic solutions do not
general, shadow aperiodic ones because Hamiltonian
tems do not possess any attractor, and chaotic solutions
area filling ~when the system can be reduced to two coor
nates, as in the annular billiard!, or volume~hypervolume!
filling. Furthermore, periodic solutions may be stable, u
stable, or neutral@4,5#. Periodic solutions are nevertheless
interest because they structure, at least locally, the ph
space@4#. Also, for billiards, they receive an optical interpre
tation with significant consequences on scattering feature
the extended electromagnetic problem, such as concer
MDRs for the circular billiard.

The aim of this paper is, therefore, to study periodic orb
in the annular billiard. This billiard is chosen because~i! it
simultaneously shares the properties of nonintegrability
electromagnetic exact solvability and,~ii ! with the associated
GLMT, it opens the way to the optical characterization o
class of nonhomogeneous particles. Furthermore, bec
the status of periodic orbits in a billiard is different than t
one for 3D strongly dissipative systems, specific tools h
to be developed.

The paper is organized as follows. Section II presents
annular billiard, its generic Hamiltonian behavior, and d
rives a number of equations to be used later, for the val
tion ~or rejection! of candidates for periodic orbits. Sectio
III presents the grayscale distance charts allowing one
detect candidates, the analytical-numerical techniques to
used to validate~or reject! the candidates, and a comment
catalog of the periodic orbits up to (N56)-symmetrical or-
bits. Some further comments and prospective sections
also provided. Section IV presents our conclusion. Tech
calities concerning the validation of periodic orbits in t
catalog are reported in the Appendix.

II. THE ANNULAR BILLIARD AND ITS EQUATIONS

A. The annular billiard

We consider a circular boundaryB, with a radiusR set
equal to 1, without any loss of generality. Inside this boun
ary, we insert a secondary circle~called the inclusion in ref-
erence to the extended GLMT electromagnetic proble!,
with a radius r ,1, eccentrically located, defined by i
boundaryB8 ~Fig. 1!. The center of the host circle is locate
at the originO of a Cartesian coordinate system~xOy!. The
centerO8 of the inclusion is located on the axisOy ~again
without any loss of generality!. The location ofO8 with re-
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spect toO is algebraically defined asy(O8)5d. We limit our
investigation to the cased.0. The cased50 is of limited
interest because the Hamiltonian system is then integra
The cased,0 is equivalent to the cased.0 through ap
rotation of the figure. This configuration is traditional in th
electromagnetic context@12# but differs from the one in Refs
@13–14# in which the centerO8 is located on the axisOx. In
the billiard, trajectories are straight lines excepted at impa
~on the host circle and on the inclusion! with the Snell-
Descartes law being satisfied~the angle of reflection is equa
to the angle of incidence!.

B. Phase space

The annular billiard exhibits two degrees of freedom an
therefore, requires a four-dimensional phase space. Du
the conservation of energy, the motion takes place on a th
dimensional hypersurface and its description can, theref
be reduced to a two-dimensional mapping, by using a Po
carésurface of section. The two variables for the mappi
are chosen to be two stroboscopic angles~w, a! characteriz-
ing an impact of the trajectory on the host circle. The spa
~w, a! is then a reduced phase space@4# and is simply called
the phase space in this paper.

Angles and conventions are displayed in Fig. 2. The an

FIG. 1. The annular billiard.

FIG. 2. Angles and conventions for angles in the annular
liard.
2-2



n.
e
le

er
h

te
th

th
a
m

he
th

is

i-
re

re
ar
ar
nt

e
r
g

i

s

ct

ing

e
for

-

e,
na-
d to
ost
ulo
bit

-

ng,

l-

r-

PERIODIC ORBITS IN HAMILTONIAN CHAOS OF THE . . . PHYSICAL REVIEW E 65 016212
wP@0,2p# defines the location of an impact onB. It is mea-
sured from axisx, in the usual counterclockwise fashio
With R51, the measurew of the location is equivalent to th
measures5w of an arc length on the host circle. The ang
aP@2p/2,1p/2# defines the direction of propagation aft
impact, measured from the normal to the host circle. T
modulus of the tangential momentum at impact is thenp
5sina, positive or zero whenaP@0,2p#, i.e., when the
vectorial component of the tangential momentum is orien
counterclockwise, and negative otherwise. Impacts on
inclusion are characterized by an anglev, as defined in Fig.
2. The anglev is not a phase space coordinate since
phase space is 2D, but will be convenient for algebraic m
nipulations. The nonintegrability of the system arises fro
the fact that the tangential momentum is not preserved w
the trajectory hits the inclusion between two impacts on
host circle.

C. Genericity of the annular billiard

The parametersd ~location of the inclusion! andr ~radius
of the inclusion! are control parameters of the system. In th
paper, explicit calculations are carried out ford50, 5,
r 50, 35. The genericity@5# of the annular billiard for these
control parameter values is illustrated in Fig. 3 displaying
sample of trajectories starting from different initial cond
tions in the~w, a! phase space~such a representation is he
called a Hamiltonian chart!.

For uau large enough, we may observe fixed points cor
sponding to inclusion non-touching periodic orbits. These
the MDRs, with rational winding numbers, of the circul
billiard. Still for uau large enough, we observe invaria
Kolmogorov-Arnold-Moser~KAM ! curves, witha5const,
i.e., p5const, which are the invariant KAM curves of th
circular billiard, with irrational winding numbers. Fo
smaller values ofuau, we are dealing with inclusion-touchin
trajectories. The Hamiltonian chart then exhibits two dom
nant stable periodic orbits~as we shall see later these areN
54 andN56 periodic orbits! surrounded by islands~invari-
ant KAM curves associated with the stability of these orbit!,
immersed in an area-filling chaotic sea.

D. Mappings and area-preservation

Let us consider a piece of trajectory from initial impa
(w0 ,a0) to next impact (w1 ,a1). We must then distinguish
two mappings:

FIG. 3. Genericity of the annular billiard.
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~i! M0 :(w0 ,a0)→(w1 ,a1) if the piece does not hit the
inclusion.

~ii ! M1 :(w0 ,a0)→(w1 ,a1) if the piece does hit the in-
clusion.

From geometric considerations, we establish the hitt
condition for the mappingM1 ,

r>ud cos~w01a0!1sina0u, ~1!

in which the sign ‘‘equal’’ is for grazing incidence on th
inclusion. We have an obvious complementary condition
the mappingM0 .

The M0 mapping is established to read as

w15w012a01«p, ~2!

a15a0 , ~3!

in which «511 for a piece running counterclockwise with
out crossing the semi-axisOx, and«521 for a piece run-
ning clockwise without crossing the semi-axisOx. It is actu-
ally convenient to set«511 as in Ref.@14#. Then,w is to be
understood modulo 2p. Recall, however, thanwP@0,2p#.
Then, in Eq.~2! and, similarly, in other equations to com
we have to carefully evaluate the exact modulo determi
tion to be chosen. In practice, these equations will be use
validate periodic orbits already detected. Therefore, the m
expedient and efficient way to choose the proper mod
determination is to check on a drawing of the periodic or
under study.

For theM1 mapping, we obtain~after more effort!

sinv05
21

r
@sina01d cos~w01a0!#, ~4!

w12a15w01a012v0 , ~5!

sina152r sinv01d cos~w12a1!, ~6!

in which the angle of reflectionv on the inclusion~not a
phase-space coordinate! is conveniently introduced. Equa
tions ~1!–~6! agree with the ones given in Ref.@14# under a
change of conventionw5u2p/2, a→2a.

M0 mapping is readily checked to be area preservi
both with coordinates~w, a! and (s,p)5(w,sina). It is also
a fact, but more tricky to check, that theM1 mapping is
area-preserving in terms of coordinates~s, p!, but not in
terms of ~w, a!, in agreement with a remark by Berry@5#.
Since any mappingM (n) :(w0 ,a0)→(wn ,an) is a product of
M0 and M1 mappings, it then follows that the annular bi
liard is Hamiltonian~area preserving! in terms of coordinates
~s, p!.

E. Mapping sequences

A piece of trajectory withn impacts including the initial
impact (w0 ,a0), i.e., with (n21) elementary pieces, is cha
acterized by a mappingM (n21) which is a product of (n
21) submappingsM0 andM1 according to
2-3
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M ~n21!5Mi n21
Mi n22

. . . Mi 1
, ~7!

in which i j ’s ( j 51 . . .n21) are 0’s or 1’s and, by conven
tion, the rightmost submappingMi 1

:(w0 ,a0)→(w1 ,a1) is
the first submapping encountered along the piece of tra
tory. Conveniently dropping the uppercase lettersM, the
piece of trajectory is then characterized by a sequence o
and 1’s, denotedSP and called the mapping sequence of t
piece of trajectoryP,

SP5 i n21i n22 . . . i 1 . ~8!

F. Periodic orbits, equivalence classes, and admissible
mapping sequences

By definition, a periodic orbit of periodN ~we haveN
>1! satisfies

~wn1N , an1N!5~wn , an!, ~9!

and possesses a mapping that is a product ofN submappings
M0 and M1 , with coordinate endpoints identified. We als
assume that we only consider prime periodic orbits, i.e.,N is
not a multiple of another integerN8,N that would also sat-
isfy Eq. ~9!. The geometrical figure depicting a periodic orb
is invariant under:

~i! a change of the initial impact (wn ,an), which is
equivalent to a time translational invariance, and to a B
noulli shift on the mapping sequence.

~ii ! A change of the sign of the initial anglean , which is
equivalent to a time reversal invariance and to a reversa
the mapping sequence.

These invariances are well exemplified in the Hamilton
chart for two classes of orbits, later discussed@4 ~2! 1 and 6
~2! 1 in the catalog of Sec. III B#.

We, therefore, define equivalence classes of periodic
bits in which all periodic orbits displaying the same ge
metrical picture are equivalent. This implies that all period
orbits in an equivalence class possess the same mappin
quences modulo reservals and shifts of mapping sequen
Mind however that equivalent mapping sequences may
shared by periodic orbits pertaining to different classes@such
as the ones associated with 6~4! 1 and 6~4! 2 in the catalog#.

Periodic orbits may be inclusion touching or no
inclusion-touching. The set of non-inclusion-touching pe
odic orbits contains all MDRs~WGMs! of the circular bil-
liard ~relevant to light scattering by spheres!, with mapping
sequences having the form. . . 000 . . . ,i.e., exhibiting only
the symbol 0. Their discussion is classical~and trivial! in the
Hamiltonian framework and is omitted from this paper@17#.

Inclusion-touching periodic orbits~from now on, simply
called periodic orbits when there is no ambiguity!, con-
versely possess mapping sequences containing at leas
symbol 1. We shall provide a catalog of equivalence clas
of periodic orbits, in which each class is displayed via o
representative, with the following conventional conditio
the mapping sequence of the representative must maxim
the number of 1’s on its right most locations. Such a m
ping sequence is called an admissible mapping sequence
01621
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us note that this condition does not always uniquely de
mine the representative@more than one representative in th
same class may share the same admissible mapping
quence, see examples in the catalog of Sec. III B, such as
the class of 2~1! 1 that possesses two admissible repres
tatives#. From now on, initial conditions denoted as (w0 ,a0)
are reserved for admissible representatives, i.e., having
missible mapping sequences.

The Hamiltonian chart of Fig. 3 exhibits a visually dom
nant period-six stable periodic orbit that is symmetrical~as
we shall see, there are symmetrical and nonsymmetrical
riodic orbits!. Therefore, the catalog of representatives w
be drawn up toN55 for symmetrical and nonsymmetrica
periodic orbits and up toN56 for symmetrical orbits. Ac-
cordingly, Table I lists all admissible mapping sequences
to N56 in the first column.

Column 2 in Table I designates the admissible mapp
sequences by a labelA(B) that will be later used to label the
representatives displayed in the catalog, in whichA5N is
the period of the sequence~orbit! andB is an ordinal positive
integer allowing one to order the admissible mapping
quences for a givenN. The periodN being fixed, let us con-

TABLE I. Admissible mapping sequence for periodic orbits u
to periodN56

Sequences Label Occurrence

1 1 ~1! 2S
01 2 ~1! 1S,1NS
11 2 ~2! none
001 3 ~1! none
011 3 ~2! 1S,1NS
111 3 ~3! none
0001 4~1! 1S
0101 4~2! 1S
0011 4~3! none
0111 4~4! 1S,1NS
1111 4~5! none
00001 5~1! 1S,1NS
00101 5~2! none
00011 5~3! 2S,1NS
01011 5~4! 1S,2NS
00111 5~5! 1S,1NS
01111 5~6! 2S,1NS
11111 5~7! none
000001 6~1! 1S
001001 6~2! 1S
000101 6~3! 1S
000011 6~4! 2S
010101 6~5! 1S
001011 6~6! none
000111 6~7! 2S
011011 6~8! 4S
010111 6~9! 1S
001111 6~10! 2S
011111 6~11! 1S
111111 6~12! none
2-4
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sider two admissible mapping sequencesS1 andS2 with la-
bels N(B1) and N(B2), respectively. We say thatS1 is
smaller thanS2(S1,S2) iff B1,B2 according to the intege
natural order. For instance, 01,11. The rules used to defin
the admissible mapping sequence order are as follows. LM
be the number of 1’s in a sequence. Let us consider
sequencesS1 and S2 sharing the same periodN and two
different values ofM, M1 and M2 , respectively. If M1

,M2 , thenS1,S2 . Next, let us consider two sequencesS1

andS2 sharing the same periodN and the same value ofM.
ThenS2.S1 iff the number of symbols 1 larger inS2 than in
S1 , in the rightmost parts of the sequences.

Now, let us consider an admissible mapping sequencS
with periodN andM symbols 1. Let us mapS to a conjugate
S* by changing 0’s to 1’s and 1’s to 0’s. We obtain th
mapping sequence of a periodic orbit but this sequence is
necessarily admissible and the periodic orbit is, therefo
not necessarily an admissible representative of the equ
lence class. For instance,S500101 is mapped toS*
511010, which is not admissible~the associated admissib
mapping sequence is 01011!. Similarly, the time reversal in-
variance (a↔2a) concerns equivalence classes but n
necessarily admissible representatives. For instance, u
time reversal, the admissible mapping sequenceS50011 is
mapped toS851100, which is not admissible. In the catalo
of representatives, it will then be necessary to specify
initial conditionw0 and an arrow of time~sign ofa0! ensur-
ing that the displayed periodic orbit is an admissible rep
sentative of its equivalence class. The symmetry of
Hamiltonian chart of Fig. 3 with respect toa50 is then
associated with the fact that this chart displays all eleme
of an equivalence class, including nonadmissible periodic
bits.

Finally, because an admissible mapping sequence d
not necessarily generate any periodic orbit, Table I displa
third column ~occurrence! to be later commented when th
catalog is presented.

G. Basic equations

We call ‘‘basic equations’’ the equations, for periodic o
bits, which concatenate submappingsM0 and M1 equations
for a given mapping sequence. In this paper, we shall o
deal with basic equations for admissible mapping sequen
@see the example of Eqs.~10!–~19! in the next section#. In
principle, basic equations then allow one to determine
periodic orbits associated with a given admissible mapp
sequence. In practice, solving a set of basic equations is
possible, excepted for simple special cases~small values of
the periodN!. Basic equations are then better used to valid
~or reject! candidates of period orbits detected in a previo
step~Sec. III!.

H. Derived equations for admissible mapping sequences
0 . . . 01 . . . 1

An admissible representative is determined by two ini
valuesw0 and a0 , therefore, requiring two equations~ex-
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pected for special cases, when a single equation, say fora0 ,
can be established, with examples in the Appendix!. Such
two equations may be obtained from the set of basic eq
tions, and are called derived equations. In this section,
establish derived equations for admissible mapping
quences of the form0 . . . 01 . . . 1,with M symbols 1, fol-
lowed by (N-M ) symbols 0 ~we recall that mapping se
quences are read from right to left!. All admissible mapping
sequences are of this form up toN53 included~Table I!.

B asic equations read as

sinv j5
1

r
@2sina j2d cos~w j1a j !#, j 50 . . .M22,

~10!

w j 112a j 1152v j1w j1a j . ~11!

sina j 1152r sinv j1d cos~w j 112a j 11!, ~12!

sinvM215
1

r
@2sinaM212d cos~wM211aM21!#,

~13!

wM2aM52vM211wM211aM21 , ~14!

sinaM52r sinvM211d cos~wM2aM !, ~15!

w j5w j 2112a j 211p, j 5M11 . . .N21, ~16!

a j5a j 21 , ~17!

w05wN2112aN211p, ~18!

a05aN21 , ~19!

in which we conveniently dropped the symbole in Eqs.~16!
and ~18!, see Eq.~2!, with w being understood modulo 2p
~for applications, recall, however, thatwP@0,2p#!. Also, we
isolated theM th mappingM1 in Eqs. ~13!–~15! for later
convenience.

Using iteratively Eq.~10! for j 50, Eq.~12! for j 50, Eq.
~10! for j 51, Eq.~12! for j 51, . . . , ending with Eqs.~13!,
~15!, and using Eqs.~17!, ~19!, we establish

cos~w01a0!52cos~wM2a0!2 (
i 51

M21

@cos~w i1a i !

1cos~w i2a i !#. ~20!
2-5
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Next, from Eqs.~16!–~19!

wM5w02~N2M !~p12a0!. ~21!

Using Eq.~11! and a recurrence technique

w i2a i5w01a012F (
j 50

i 21

v j1(
j 51

i 21

a j G , i 51 . . .M21,

~22!

from which we also have

w i1a i5w01a012F (
j 50

i 21

v j1(
j 51

i

a j G , i 51 . . .M21.

~23!

Equation~20! then becomes

cos~w01a0!1cos@w02a02~N2M !~p12a0!#

1 (
i 51

M21 H cosFw01a012S (
j 50

i 21

v j1(
j 51

i 21

a j D G
1cosFw01a012S (

j 50

i 21

v j1(
j 51

i

a j D G J 50, ~24!

to be complemented by the following readily establish
equations~use a recurrence technique!, for j 50 . . .M22
is
ot
,

01621
d

v j5arcsinH 1

r F2sina j2d cosS w01a0

12(
i 50

j 21

v i12(
i 51

j

a i D G J , ~25!

a j 115arcsinH 2r sinv j1d cosS w01a0

12(
i 50

j

v i12(
i 51

j

a i D J . ~26!

In deriving Eq. ~20!, we had to divide byd, therefore,
dismissing the cased50 ~integrable system!. In the sequel,
this equation will be conveniently called the first equati
~FE! for the mapping sequence under study.

For the second equation~SE!, we invoke Eq.~14!, which
has not yet been used, and establish

vM211a01~N2M !S p

2
1a0D1 (

j 50

M22

v j1 (
j 51

M21

a j50,

~27!

which ~with w understood as being modulo 2p! is to be
understood modulop. This SE is to be complemented by
r sinvM2152sinaM212d cosS w01a012 (
j 50

M22

v j12 (
j 51

M21

a j D
52sina01d cos@w02a02~N2M !~p12a0!#. ~28!
izing
iled
us

so-
In Eq. ~28!, we have two variants to evaluatevM21 . The
best variant to be chosen, before insertion into Eq.~27!, may
depend on the mapping sequence under study.

I. Derived equations for arbitrary admissible mapping
sequences

Mapping sequences of the form0 . . . 01 . . . 1,previously
considered, may be symbolically denoted asP1M1 , in which
M15M designates the number of symbols 1 andP15(N
2M ) designates the number of symbols 0. Arbitrary adm
sible mapping sequences may then be symbolically den
asPKMK . . . P2M2P1M1 , in a similar way. For further use
we introduce the notation
-
ed

Rj5(
i 50

j

~Pi1Mi !, ~29!

with the conventionR050, and the resultN5RK . The FE
and SE for the present case may be obtained by general
the procedure described in the previous section. Deta
derivations are, however, too lengthy to be reported. Let
only mention that, when writing the basic equations, we i
late

w j 112a j 1152v j1w j1a j , j 5RK211MK21,
~30!

which is to be used to establish the SE.
For the FE, we then obtain
2-6
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2cos~w01a0!5H cos~wM1
2aM1

!1 (
i 51

M121

@cos~wR01 i1aR01 i !1cos~wR01 i2aR01 i !#J
P1M1

1H cos~wR1
1aR1

!1cos~wR11M2
2aR11M2

!1 (
i 51

M221

@cos~wR11 i1aR11 i !1cos~wR11 i2aR11 i !#J
P2M2

1H cos~wR2
1aR2

!1cos~wR21M3
2aR21M3

!1 (
i 51

M321

@cos~wR21 i1aR21 i !1cos~wR21 i2aR21 i !#
P3M3

1¯1H cos~wRK21
1aRK21

!1cos~wRK211MK
2aRK211MK

!1 (
i 51

MK21

@cos~wRK211 i1aRK211 i !

1cos~wRK211 i2aRK211 i !#J
PKMK

, ~31!
re
in which each term of the form$ %pj M j
is specific of the

partial sequencePjM j in the mapping sequence.
We also have, for the$ %P1M1

term

w j2a j5wR01 j2aR01 j5w01a012F (
i 50

j 21

v i1(
i 51

j 21

a i G ,

j 51 . . .M1 , ~32!

w j1a j5w01a012F (
i 50

j 21

v i1(
i 51

j

a i G , j 51 . . .M1 .

~33!

Note that, in Eq.~33!, we only needj up to (M121) for
insertion in the$ %P1M1

term of Eq.~31!. It is, however, a fact

that Eq.~33! also holds forj 5M1 . Similar remarks will also
be valid in the sequel, but will not be repeated any mo
Eqs.~32!–~33! are complemented by:

v j5arcsinH 1

r F2sina j2d cosS w01a012(
i 50

j 21

v i

12(
i 51

j

a i D G J , j 50 . . .M121, ~34!

a j5arcsinF2r sinv j 211d cosS w01a012(
i 50

j 21

v i

12(
i 51

j 21

a i D G , j 51 . . .M1 . ~35!

For the$ %P2M2
term, we use

wR1
1aR1

5~wM1
2aM1

!1P1p12~P111!aM1
, ~36!
01621
.

with (wM1
2aM1

) and aM1
available from Eqs.~32! and

~35!, respectively. We also have

wR11 i2aR11 i5~wR1
1aR1

!12F (
j 50

i 21

vR11 j1(
j 51

i 21

aR11 j G ,

i 51 . . .M2 , ~37!

wR11 i1aR11 i5~wR1
1aR1

!12F (
j 50

i 21

vR11 j

1(
j 51

i

aR11 j G , i 51 . . .M2 , ~38!

vR1
5arcsinH 1

r
@2sinaM1

2d cos~wR1
1aR1

!#J , ~39!

aR11 j5arcsin@2r sinvR11 j 211d cos~wR11 j2aR11 j !#,

j 51 . . .M2 , ~40!

vR11 j5arcsinH 1

r
@2sinaR11 j2d cos~wR11 j

1aR11 j !#J , j 51 . . .M221. ~41!

For higher-order$ %Pj M j
terms, excepted for the last term

$ %PKMK
, which will receive a special treatment, we use

wRn
1aRn

5~wRn211Mn
2aRn211Mn

!1Pnp

12~Pn11!aRn211Mn
, n51 . . .K22,

~42!
2-7
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wRn1 i2aRn1 i5~wRn
1aRn

!12F (
j 50

i 21

vRn1 j

1(
j 51

i 21

aRn1 j G , n50 . . .RK22 ,

i 51 . . .Mn11 , ~43!

wRn1 i1aRn1 i5~wRn
1aRn

!12F (
j 50

i 21

vRn1 j

1(
j 51

i

aRn1 j G , n50 . . .RK22 ,

i 51 . . .Mn11 , ~44!

vRn
5arcsinH 1

r
@2sinaRn211Mn

2d cos~wRn
1aRn

!#J ,

~45!

aRn1 j5arcsin@2r sinvRn1 j 211d cos~wRn1 j2aRn1 j !#,

j 51 . . .Mn11 , ~46!

vRn1 j5arcsinH 1

r
@2sinaRn1 j2d cos~wRn1 j

1aRn1 j !#J , j 51 . . .Mn1121. ~47!

As previously mentioned, the last term$ %PKMK
requires a

special treatment. This is due to the fact that Eq.~30! has
been isolated to generate the SE. The choice, for this is
tion, is due to the fact that Eq.~30! appears near the bottom
of the list of basic equations. We then establish

wRK21
1aRK21

5~wRK221MK21
2aRK221MK21

!1PK21p

12~PK2111!aRK221MK21
, ~48!

wRK211 i2aRK211 i5~wRK21
1aRK21

!12F (
j 50

i 21

vRK211 j

1(
j 51

i 21

aRK211 j G , i 51 . . .MK21 ,

~49!

wRK211 i1aRK211 i5~wRK21
1aRK21

!12F (
j 50

i 21

vRK211 j

1(
j 51

i

aRK211 j G , i 51 . . .MK21,

~50!

aRK21
5aRK221MK21

, ~51!
01621
a-

vRK21
5arcsinH 1

r
@2sinaRK221MK21

2d cos~wRK21
1aRK21

!#J , ~52!

aRK211 j5arcsin@2r sinvRK211 j 21

1d cos~wRK211 j2aRK211 j !#, ~53!

vRK211 j5arcsinH 1

r
@2sinaRK211 j2d cos~wRK211 j

1aRK211 j !#J , j 51 . . .MK21, ~54!

wRK211MK
2aRK211MK

5w02PKp2~2PK11!a0 .
~55!

Finally, starting from Eq.~30!, we establish the SE read
ing as

2vRK211MK2112aRK211MK211~wRK211MK21

2aRK211MK21!2w01PKp1~2PK11!a050,

~56!

in which all terms may be explicitly expressed versusw0 and
a0 by using previously established formulas and in which,
in some previous cases, the exact modulo determinatio
be used may need to be adjusted.

III. DETECTION, VALIDATION, AND CATALOG
OF ADMISSIBLE REPRESENTATIVES

A. Detection and validation

Let us consider arbitrary initial conditions (wn ,an) in the
phase space and theirNth iterate (wn1N ,an1N). Let us in-
troduce

Da~N!5an1N2an , ~57a!

Dw~N!5wn1N2wn , modulo 2p. ~57b!

We also introduce a distanceD defined as

D~N!5Dw~N!21Da~N!2. ~58!

Under these circumstances, according to Eq.~9!, the ini-
tial conditions (wn ,an) generate a periodic orbit of periodN
if and only if D (N)50. We then developed a graphic
software displayingD ~N!, for N given, in a grayscale fash
ion, with darker zones corresponding to smaller values oD
and with aDmax value defining the grayscale levels. Sca
ning over (wn ,an), we then obtain grayscale charts, call
distance charts displayed, forN51, . . . ,6,with Dmax51, in
Fig. 4. There is a fast increase of the complexity of the cha
whenN increases.
2-8
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Visually, these charts exhibit a fairly good symmetry wi
respect toa50. This symmetry is the consequence of t
time reversal symmetry associated with reversals of mapp
sequences. The symmetry is, however, not perfect, bec
the distance charts in Fig. 4 are forDmaxÞ0. For Dmax50,
the symmetry would be perfect~as it is in the Hamiltonian
chart!.

To detect candidates for periodic orbits, in a distance ch
for period N, we, therefore, have to explore the graysc
landscape~a rather lengthy procedure whenN is large!. This
exploration is carried out by a combination of zooms a
decreases of nominalDmax distances down to altitude zero
Periodic orbits are then located at the bottom of wells. Th
wells may be much elongated as already apparent in the
tance chart, forN51, displaying two wells associated wit
two different inclusion-touching periodic orbits@and for (N
51) with two different equivalence classes, each equi
lence class containing only one element#.

Distance charts exhibit inclusion touching and no
inclusion-touching periodic orbits. As previously mentione
we are only interested in inclusion-touching periodic orb
However, there also exist grazing periodic orbits that may
simultaneously viewed as inclusion touching and as n
inclusion-touching periodic orbits. Referring to the hittin
condition of relation~1!, grazing periodic orbits exhibitM1
mappings for whichr in the left-hand side~lhs! is just equal
to the quantity in the right-hand side~rhs!. Accordingly, all
inclusion-touching periodic orbits are found to be isolat
~this means with isolated locations in the distance chart! ex-
cepted for grazing periodic orbits that are connected w
non-inclusion-touching periodic orbits. Due to the rotation
invariance of the circular billiard, non-inclusion-touching p
riodic orbits are not isolated. They appear on continuo
lines ~KAM curves!. These lines, similarly as in Fig. 3, ma
be located at the top and bottom of the distance charts~large
uau’s! and, forN large enough, would correspond to genui
morphology-dependent-resonances, i.e., to genuine whis
ing gallery modes. They also may be located at smaller
ues of uau, and then are not genuine MDRs, because t
allow refractive escapes@like 2 ~1! 2 in the catalog with the
inclusion removed#.

Then any inclusion-touching periodic orbit, including an
grazing periodic orbit, is isolated with respect to any oth

FIG. 4. Distance chart forN56, Dmax51.
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inclusion-touching periodic orbit. Therefore, for each d
tected candidate, the exploration of the distance charts
vides us with a couple (wn ,an) of initial conditions gener-
ating the periodic orbit, by using successive zooms andDmax
distance decreases. Note, however, that the couple (wn ,an)
is not necessarily the couple (w0 ,a0) of an admissible rep-
resentative of an equivalence class.

For any~w, a!, and a presentN, the software allows one
in a secondary window, to visualize the associated piece
trajectory, in the physical space of the annular billia
Therefore, any candidate generated by the initial conditi
(wn ,an) may be visualized too. However, this visual obse
vation is not sufficient to validate the candidate because
practice, numerical limitations prevent us from decreas
Dmax down to altitude 0~which is, therefore, never reached!
and because the vizualisation is limited by pixel resolutio
Therefore, once a candidate is detected, it has to be valid
~in practice, we essentially limited ourselves to the validat
of an admissible representative in the equivalence cla!.
Validations are carried out by using the algebraic express
of the basic equations~Sec. II G! or of the derived equations
~Secs. II H and II I!. These algebraic expressions may be
vestigated by using algebraic solving~by hand, or with the
assistance of an algebraic solver from a symbolic comp
tion software! or numerical solving. In the last case, we us
a numerical solver having the two following properties:~i! in
general, the solver only computes a single real root,~ii ! the
solver may fail to find a root even though there is one:
such a case, specifying appropriate range information m
result in a successful computation.

Accounting for these specifications, the strategy for va
dation by using the numerical solver is as follows. Approp
ate ranges are always used, either relying on measu
angles on a drawing of the candidate~this may be sufficient!,
or by using accurate locations measured on a distance c
Successful computations, therefore, validate the candid
Unsuccessful computations, conversely, are not sufficient
rejection which then, could only be reliably based on analy
cal arguments. However, in practice, ambiguous cases h
not been met.

B. Catalog

The system under study exhibits temporal symmetr
namely, time translational invariances and time reversal
variance~equivalence of mapping sequences through sh
and reversal!, leading to the definition of equivalence class
of periodic orbits. It also exhibits a spatial symmetr
namely, mirror symmetry with respect to the axis 0y ~Fig. 1!.
As a result, there exist two kinds of periodic orbits~i! sym-
metrical periodic orbits that intrinsically exhibit the mirro
symmetry and~ii ! nonsymmetrical periodic orbits that mu
occur by pairs, the mirror symmetry then relating the tw
companions of the pair.

The catalog, given in Fig. 5, gathers symmetrical adm
sible representatives forN from 1 to 6 and nonsymmetrica
admissible representatives~only one companion in a pair! for
N51 to 5 ~with a single admissible representative for ea
equivalence class!.
2-9
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FIG. 5. Catalog of admissible representatives of periodic orbits.
016212-10
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PERIODIC ORBITS IN HAMILTONIAN CHAOS OF THE . . . PHYSICAL REVIEW E 65 016212
Validations of all these representatives require a consi
able amount of algebra and are sketched in the Appen
Obviously, symmetrical representatives exhibit extrare
tions, called symmetry relations. These relations allow on
simplify the algebra and, very often, it is possible to redu
the set of two equations for (w0 ,a0) to a single equation for
a0 . Examples of symmetry relations are Eqs.~A35!–~A40!
for the orbit 5~4! 1 ~see, the Appendix!. Extra simplifications
may also occur when the orbit under study is degener
leading to extrarelations called degeneracy equations~Sec.
III D !.

The catalog contains one admissible representative
each detected and validated equivalence class, with a lab
for the initial point (w0) and an arrow of time~sign of a0!,
generating an admissible mapping sequence. Each repre
tative receives a name having the expressionA (B) C in
which A ~B! is the label of the mapping sequence~Table I!
andC is an ordinal positive integer~1, 2 . . .! allowing one
to distinguish different admissible representatives having
same admissible mapping sequence. For a given labelA ~B!,
the value ofC for any symmetrical orbit in the catalog i
smaller than for any nonsymmetrical orbit in the catalog.
particular, this ensures us that the names of the symmet
periodic orbits of the catalog forN56, would not be modi-
fied if this part of the catalog were extended to nonsymme
cal orbits. Afterward, we provide the values (w0 ,a0) defin-
ing the initial point 0 and, finally, a labelS ~NS! indicates
whether the orbit is symmetrical~nonsymmetrical!.

C. Occurrences of equivalence classes

We observe that all admissible mapping sequences
actually not present in the catalog. Occurrences of admiss
mapping sequences are displayed in the last column of T
I, in which, for each admissible mapping sequence, a la
AS indicatesA occurrences of symmetrical representatives
the catalog and a label ANS indicatesA occurrences of non
symmetrical pairs of representatives in the catalog.

For N56, two admissible mapping sequences do not g
erate any representative in the catalog but recall that, for
value of the period, nonsymmetrical periodic orbits have
been cataloged. Lacking admissible representatives,
therefore, lacking equivalence classes, also appear foN
52 . . . 5. Insome cases, lacking equivalence classes co
possibly exist for other values of the control parameters~i.e.,
dÞ0, 5, rÞ0, 35! in connection with the thema of bifurca
tions of periodic orbits. In other cases, the lack of equi
lence classes could be deeply structural, i.e., independe
the control parameters. This thema of occurrences of equ
lence classes is not extensively investigated in this paper
we shall study, as an example, the case of the admiss
mapping sequence 11.

A periodic orbit with mapping sequence 11 must st
from a pointA on the host circle, impinge on the inclusion
B, reaches the host circle atC ~first M1 mapping! and go
back toA following the reverse path~secondM1 mapping!.
Therefore, the normal to the inclusion atB must be an axis of
symmetry. Since 0y is the only axis of symmetry available
periodic orbits with mapping sequence 11 can be as sketc
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in Figs. 6~a! or 6~b! ~opportunities!. In both cases, we hav
the symmetry relations

a15a050, ~59!

v152v0 , ~60!

and, depending on the case

~6a! w15p2w0 , ~61!

~6b! w153p2w0 . ~62!

Then, we write the basic equations for the mapping
quence 11, and implement Eqs.~59! and ~60!. In case~6a!,
we obtainr /d521, which is impossible. In case~6b! we
conversely obtainr /d51. Therefore, the mapping sequen
11 is forbidden if rÞd. If r 5d, we obtain the picture
sketched in Fig. 6~c! with a tangency between the inclusio
and the axis 0x. Simple geometrical considerations demo
strate that periodic orbits with sequence 11 indeed exist w
r 5d. Furthermore, in agreement with the solutionr 5d, we
may geometrically check that the value ofw0 does not matter
as far asw0P@p,2p#. Forw053p/2, we recover period-one
orbits previously described. Period-two orbits with sequen
11, therefore, generically do not occur, i.e., they only oc
for r 5d and an infinitesimal perturbation from this solutio
makes them forbidden via what we may call an abrupt bif
cation.

In principle, such approaches should allow one to inv
tigate lacking equivalence classes, i.e., equivalence cla
that do not generate any actual representative, in orde
determine how such a lacking property might depend on
control parameters.

In the same spirit, we may observe, for control parame
different thand50, 5, r 50, 35, a periodic orbit having the
same structure than our 6~2! 1 in Ref. @13#, and a periodic
orbit having the same structure than our 6~8! 1 in Ref. @14#.

D. Degeneracy relations

We introduce several cases of degeneracy, starting w
degeneracy with respect to phase space coordinates an
terward, ending with degeneracy with respect to control
rameters.

A periodic orbit isa degenerate iff one or severala’s in
the sequence (a0 ,a1 . . .aN21) is zero. In the catalog, the
following representatives area degenerate: 1~1! 1, 1 ~1! 2, 2
~1! 2, 5 ~4! 3, 6 ~8! 1, and 6~8! 2. Eacha degeneracy implies

FIG. 6. Research of periodic orbits with mapping sequences
~a! and ~b!: opportunities~c! actual occurrences.
2-11
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a relation, i.e.,a i50 for somei, which is a degeneracy re
lation.

A periodic orbit isw degenerate iff somew’s in the se-
quence (w0 ,w1 ...wN21) identify. In the catalog, the follow-
ing representatives arew degenerate: 4~2! 1, 5 ~4! 3, 6 ~2! 1,
6 ~8! 1, 6 ~8! 2, 6 ~8! 4, and 6~10! 2. Eachw degeneracy
implies a relation, i.e.,w i5w j for somei and somej, which
is a degeneracy relation.

a degeneracy andw degeneracy are two different kinds o
degeneracy. This means that a periodic orbit can bea degen-
erate and notw degenerate@for instance, 1~1! 1# and that an
orbit can bew degenerate and nota degenerate@for instance,
4 ~2! 1#. However, an orbit can beaw degenerate@5 ~4! 3, 6
~8! 1, 6 ~8! 2#.

A degeneracy relation can be a symmetry relation. In s
a case, the degeneracy relation is a consequence of the
metry of a symmetrical orbit. For instance, in 1~1! 1, the
a-degeneracy relationa050 is a symmetry relation. Also, in
6 ~8! 4, the w-degeneracy relationw45w1 is a symmetry
relation. Conversely, the nonsymmetrical representative 5~4!
3, for instance, exhibitsaw-degeneracy relations that are n
symmetry relations. Degeneracy relations that are not s
metry relations provide extra relations that may lead to ea
validations of the detected representatives.

Degeneracy may also be defined with respect to con
parameters, and taken as the definition of structural stab
of the periodic orbit under discussion. By definition,d de-
generacy means that we may continuously change the v
of d, without destroying the periodic orbit.

For instance, the orbits 1~1! 1 and 1~1! 2 ared degener-
ate. If d50, we also possess two extra-period 1 orbits alo
axis 0x. These orbits, however, are notd degenerate. Estab
lishing a d-degeneracy usually requires specific investig
tions.

Furthermore, by definition,r degeneracy means that w
may continuously change the value ofr, without destroying
the orbit. Also, establishing ar degeneracy usually require
specific investigations but, as a sufficient condition forr de-
generacy, we have the nullity of allv’s. According to this
sufficient criterion, here is a list ofr degenerate orbits: 1~1!
1 and 1~1! 2 with v050, 4 ~2! 1 with v05v250, and 6~2!
1 with v05v350.

E. Occurrences in phase space, and exhaustivity

Let us consider an equivalence class of periodN with the
representative in the catalog~and, therefore, all periodic or
bits in the equivalence class! without any degeneracy with
respect to phase space coordinates. This class must occuN
times in the phase space and, more important, 2N times in
the distance chart~N possible values forw due to time shifts
and two possibilities fora due to time reversal invariance!.

We say that the occurrence is 2N in the ~w, a! plane.
Degeneracy with respect to phase space coordinates
creases the number of occurrences in the~w, a! plane. For
instance, the equivalence class of 4~2! 1 contains onlyN
54 elements~since there are only two distinct impacts o
the host circle! instead of 2N58 and, similarly the equiva-
lence class of 6~2! 1 contains onlyN56 elements, instead
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of 2N512. These elements are clearly exhibited in t
Hamiltonian chart of Fig. 3~we shall return to them later!.
Furthermore, the number of occurrences for a nonsymme
cal equivalence class may be thought as being twice la
than for a symmetrical equivalence class since the detec
of a periodic orbit in a pair implies the existence of its com
panion, leading to 4N detection opportunities in a nondege
erate case.

Next, periodic orbits of periodp in a p-distance chart also
occur under the form of periodic orbits of periodkp ~k a
positive integer! in a kp-distance chart. Finally, there is n
universal strategy to explore a distance chart~depending for
instance on the complexity of the chart! but zooms and sub
zooms are used. Therefore, a periodic orbit, for a distancD
not too close to zero, may be detected on several subzo
when the wells surrounding the associated point of altitu
zero are elongated enough.

Next, the methodology used to detect equivalence clas
does not allow one to pretend to full exhaustivity. Howev
to miss an equivalence class, we have to miss all elemen
the class. Since many opportunities are offered for the de
tion of an equivalence class as described above, the prob
ity for exhaustivity is certainly very close to 1.

F. Grazing periodic orbits

In the annular billiard, first locate a periodic orbit of th
circular billiard that~if possible! does not interact with the
inclusion. Then, keeping the inclusion at rest, rotate the h
circle and its attached periodic orbit until the orbit just tou
the inclusion~if possible!. This process, when it works, gen
erates a grazing periodic orbit of the annular billiard.

The circular billiard does not possess any periodic orbit
period 1. Accordingly, there is no period-1 grazing period
orbit ~catalog of Fig. 5!. For N52, consider a periodic orbi
of the circular billiard~a diametral chord!, which does not
touch the inclusion, for instance, aligned along the axis 0x.
Let us remark that this orbit impinges at right angles on
host circle (a15a050) and, therefore, is not a MDR~due to
refractive escape!. A rotation then may generate the represe
tative named 2~1! 2.

For N53, 4, and 6, we did not observe any grazing pe
odic orbit of the annular billiard. Invoking the rotational sc
nario described above, we should be able to determ
whether such orbits are forbidden~for d50.5, r 50.35! or
whether they have been missed during the exploration of
distance charts.

For N55, we have candidates based on pentagons
scribed in the circular billiard. Such pentagons may surrou
the inclusion and, upon rotation, become grazing. The pr
is by displaying an example, namely, the representative 5~1!
2 in the catalog.

The interest of a focus on grazing periodic orbits is, the
fore, warranted~and postponed to a future work!. Let us here
remark that, for a given admissible mapping sequenceA(B),
grazing periodic orbits in the catalog received the larg
integerC in the namesA (B) C. Therefore, grazing periodic
orbits that would possibly be missed could be added in
catalog without any inconvenience.
2-12
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G. Stability

Once a periodic orbit is determined, it is important
know whether this orbit is stable or not. Here, followin
Berry @5#, a periodic orbit starting from original canonica
~i.e., area preserving! variables~s, p! may be stable or un
stable in the sense that an orbit starting at (s1ds,p1dp),
whereds anddp are small, may after many impacts~on the
host circle! remain near the periodic orbit generated by~s, p!
or may deviate increasingly from it. For a period-N orbit,
after N iterations,s andp return to their initial values while
the deviations of the nearby orbit starting from (s1dp,p
1dp) become (dsN ,dpN) with

S dsN

dpN
D5MNS ds

dpD , ~63!

with MN being a 232 matrix. Let T be the trace of the
matrix MN . Then, the periodic orbit is stable~unstable!
when uTu,2 (uTu.2) @4,5#. It is marginally stable foruTu
52. More generally, the stability~instability! of a periodic
orbit implies the stability ~instability! of the associated
equivalence class.

Relying on this formulation, it can be demonstrated th
the periodic orbits 1~1! 1 and 1 ~1! 2 are both unstable
Another way to proceed is to iterate a large enough num
of times and to graphically examine the behavior of the o
in the annular space~then avoiding lengthy and tedious a
gebraic evaluations!. In this paper, we shall be content to u
this more expedient method for periodsN.1.

All orbits of the catalog~excepted grazing orbits! have
then been tested, starting from the nominal values give
the catalog, with nine decimal digits. Since these nomi
values are actually rounded off, they correspond to nea
orbits with smallds anddp.

For unstable orbits, instabilities are always apparent a
a small number of iterations, say 30, as exemplified in Fig
and, after 1000 iterations, the annular space is essent
blackened. Only three equivalence classes have been f
to be stable, with admissible representatives 4~2! 1, 6 ~2! 1,
and 6 ~4! 1. In these cases, representatives are essen

FIG. 7. Orbit 2~1! 1 after 30 iterations~unstable!.
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visually unchanged even after 100 000 iterations. A slig
broadening may be observed, after 100 000 iterations, w
the initial conditions are taken with three decimal digits, w
an example in Fig. 8.

The degenerate stable equivalence classes of the repr
tatives 4~2! 1 and 6~2! 1, having four and six occurrences i
the phase space, are well visible in the Hamiltonian char
Fig. 3 where they generate islands~KAM curves surrounding
the elliptic points of the stable orbits!. The islands associate
with 6 ~4! 1 can be detected after a zoom around the o
locations. These islands are immersed in the chaotic sea
erated by the unstable orbits.

H. On resonances

MDRs in the circular billiard share two properties~i! they
are in resonance, that means they are periodic orbits wi
phase-matching condition and~ii ! they do not escape refrac
tively. A periodic orbit of the circular billiard is not neces
sarily a MDR~a resonance! since the second property is no
always satisfied. For example, the periodic orbit 2~1! 2 is not
a MDR since the incidence angle on the host circle lead
refractive escape in an extended light scattering problem

The presence of the inclusion destroys a set of MDRs
the circular billiard and, in turn, generates new periodic
bits that may be resonances. The investigation of this is
of much importance for electromagnetic scattering proble
is postponed to a future work.

Intuitively, we also expect that stable periodic orbits a
of particular significance in light scattering problems. T
examination of this expectation is another opportunity
future work. In particular, it is intuitively expected that th
stable orbits 4~2! 1 and 6~2! 1 would provide specific sig-
natures in the scattering diagrams, while 6~4! 1 would sig-
nificantly contribute to the structure of the internal electr
magnetic fields.

IV. CONCLUSION

Periodic orbits in the annular billiard have been stud
for specific values (d,r )5(0.5,0.35) of the control param

FIG. 8. Stable orbit 6~4! 1 after 105 iterations. Initial conditions
with three decimal digits.
2-13
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eters. A catalog of periodic orbits has been built relying o
two-step process. In the first step, candidates for admiss
representatives of equivalence classes of periodic orbits
detected by exploring distance charts in phase space co
nates. In a second step, these candidates are validate~or
rejected! from the analysis of the admissible mappings ge
erating them. Interesting issues~grazing periodic orbits, ana
lytical studies of stability, bifurcations under a change of t
control parameters, properties of resonances created by
inclusion! are briefly considered, with more systematic i
vestigations postponed to future works.

Beside the intrinsic interest of this work in the field
Hamiltonian chaos~in mechanical language! or of optical
chaos~in geometrical optics language!, we have a strong
motivation for the associated extended electromagnetic s
tering problem.

It is expected that features exposed in this paper wo
form a skeleton for electromagnetic wave interaction. A s
nificant issue is related to the existence of new MDRs in
case of a sphere with an eccentrically located spherica
clusion. More generally, an effort devoted to these iss
might contribute to the understanding of light scattering
nonhomogeneous spherical particles, and to optical cha
terizations of such particles.

APPENDIX: VALIDATIONS OF ADMISSIBLE
REPRESENTATIVES OF THE CATALOG

This appendix presents the validations of the detected
missible representatives of the catalog. This represents a
siderable amount of algebraic work that cannot be expose
detail, even in an appendix. Therefore, most often, we o
provide concise indications. More details are provided fo
chosen set for their illustrative virtue, particularly in the ca
N55, which exhibits an intermediary level of difficulty. Le
us remark that, for a given representative, there are usu
several validation strategies available. We cannot pret
that a chosen validation is necessarily the most efficient~this
would require the examination of all options and would u
duly extend the algebraic burden!.

1 (1) 1 and 1 (1) 2

Easy algebraic validation ‘‘by hand,’’ by using theM1
mapping, with (w1 ,a1)5(w0 ,a0).

2 (1) 1

We use derived equations for the type 01. An algebr
solver ~symbolic computation software! can deal with this
case.

2 (1) 2

This representative satisfiesa050, v05p/2, making the
FE for the type 01 becoming an identity. Then, return
basic equations which, witha15a050, v05p/2, readily
determinew0 , ‘‘by hand’’ computations.
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3 (2) 1

We use basic equations and implement symmetry r
tions ~implying w052p1a0!, leading to a single equation
for a0 which is numerically solved.

3 (2) 2

Derived equations for the type 011 are numerica
solved.

4 (1) 1

We use basic equations, implement symmetry relatio
show thatw054p13a0 , and establish a single equation fo
a0 , which may be solved with an algebraic solver.

4 (2) 1

Beside symmetry relations, this orbit exhibits degenera
relations ~such asv25v050!, which simplify the basic
equations, allowing one to proceed with ‘‘by-hand’’ algebra
computations.

4 (4) 1

Using derived equations for the type 0111, using symm
try relations, and by invoking theM0 map involved in the
mapping sequence, we show thatw052p1a0 . We then ob-
tain, from the FE, a single relation to determinea0 , which is
numerically solved.

4 (4) 2

We use derived equations for the type 0111, and so
numerically.

5 (1) 1

We use derived equations for the sequence 00001,
write down the FE and the SE. Then, we write down t
basic equations for theM0 maps involved in the mapping
sequence, being careful with the exact modulo determ
tions to be used, and show, with the aid of the symme
relationw15(p2w0) that

w054a01
3p

2
. ~A1!

We then observe that Eq.~A1! makes the FE being an
identity. We establish that the SE may be written as

sin~v015a0!50, ~A2!

with

v05arcsinH 1

r
@2sina02d sin~5a0!#J , ~A3!

and use a numerical solver.

5 (1) 2

This orbit is a grazing orbit that is obtained by drawing
pentagon in the host circular billiard, and rotating it until
2-14
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just touches the inclusion. This geometrical observation
lows us to use a particular procedure to validate the orbit.
write down the basic equations for theM1 map involved in
the sequence. Next, we have a grazing condition

v05
p

2
, ~A4!

and two relations characterizing the geometry of the pe
gon

w15w01
2p

5
, ~A5!

a15a0 . ~A6!

Inserting Eqs.~A4!–~A6! in the previous basic equation
we readily obtain

a052
3p

10
, ~A7!

and

r 52sina02d cos~w01a0!, ~A8!

which, after insertion of Eq.~A7!, may be solved with an
algebraic solver.

5 (3) 1 and 5 (3) 2

We use the same procedure for both. We write the deri
equations for the sequence 00011.

cos~w01a0!2cos~w027a0!1cos~w01a012v012a1!

1cos~w01a012v0!50, ~A9!

v05arcsinH 1

r
@2sina02d cos~w01a0!#J , ~A10!

a15arcsin@2r sinv01d cos~w01a012v0!#,
~A11!

4a01a11v01v152
3p

2
, ~A12!

v15arcsinH 1

r
@2sina02d cos~w027a0!#J . ~A13!

We have the symmetry relations

v15v0 , ~A14!

w25p2w0 , ~A15!

a25a0 . ~A16!

We write down the basic equations for theM0 maps~with
the exact modulo determination! and establish

w053a01p. ~A17!
01621
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Equations~A9!–~A13! then reduce to a single equation fo
a0 ,

cos~4a012v0!1cos~4a012v012a1!50, ~A18!

v05arcsinH 1

r
@2sina01d cos~4a0!#J , ~A19!

a15arcsin@2r sinv02d cos~4a012v0!#, ~A20!

which is numerically solved. The different orbits 5~3! 1 and
5 ~3! 2 are then validated by using different appropria
ranges for the numerical solver.

5 (3) 3

We numerically solve the derived equations~A9!–~A13!
for the sequence 00011~no symmetry!. The checking of ex-
act modulo determinations shows that Eq.~A12! is changed
to

4a01a11v01v152
p

2
. ~A21!

5 (4) 1

We use the derived equations for the sequence 01011.
FE reads as

2cos~w01a0!5cos~w12a1!1cos~w11a1!

1cos~w22a2!1cos~w31a3!

1cos~w42a4!, ~A22!

~w12a1!5w01a012v0 , ~A23!

~w11a1!5w01a012v012a1 , ~A24!

~w22a2!5w01a012v012v112a1 , ~A25!

v05arcsinH 1

r
@2sina02d cos~w01a0!#J , ~A26!

a15arcsin@2r sinv01d cos~w01a012v0!#,
~A27!

v15arcsinH 1

r
@2sina12d cos~w01a012v012a1!#J ,

~A28!

a25arcsin@2r sinv11d cos~w01a012v012v112a1!#,

~A29!

~w31a3!5~w22a2!14a21p, ~A30!

~w42a4!5w023a02p. ~A31!

The SE reads as

w023a022v322a22~w32a3!5p, ~A32!
2-15
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v35arcsinH 1

r
@2sina22d cos~w31a3!#J , ~A33!

~w32a3!5~w22a2!12a21p. ~A34!

The set may be solved with a numerical solver. If we imp
ment the symmetry relations

w25p2w0 , ~A35!

w453p2w3 , ~A36!

w15
3p

2
, ~A37!

a25a0 , ~A38!

a45a3 , ~A39!

v15v0 , ~A40!

then the FE becomes an identity. Under such circumstan
we may return to the basic equations, implement the sym
try relations, and establish

sina01d cos~w01a0!5~11d!sina1 , ~A41!

a15
3p

2
2w02a022v0 , ~A42!

v05arcsinH 1

r
@2sina02d cos~w01a0!#J , ~A43!

3a02w01v352
p

2
, ~A44!

v35arcsinH 1

r
@2sina02d cos~w31a0!#J , ~A45!

w352a02w012p, ~A46!

in which Eq. ~A41! is a FE and Eq.~A44! is a SE. The set
may be solved with a numerical solver.

This example shows that there is generally not a uni
validation strategy. The first approach avoids extra-algeb
manipulations required in the second approach but is num
cally about 100 times slower.

5 (4) 2

We use the same derived equations than for the orbit 5~4!
1, with a~2p! modulo determination in the rhs of Eq.~A32!,
instead of a~1p! determination, and solve numerically.

5 (4) 3

For this highly degenerate case, the SE becomes an i
tity. Therefore, we return to basic equations, implement
generacy relations, obtain two new derived equations,
solve numerically.
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5 (5) 1

We use the derived equations for the sequence 00
implement the symmetry relations and, by using the lastM0
map in the mapping sequence, establish thatw052a0
1p/2, leading to a single equation fora0 ,

sin~3a012v0!1sin~3a012v012a1!1sin~3a012v0

12v112a1!1sin~3a012v012v114a1!50,

~A47!

v05arcsinH 1

r
@2sina01d sin~3a0!#J , ~A48!

a15arcsin@2r sinv02d sin~3a012v0!#, ~A49!

v15arcsinH 1

r
@2sina11d sin~3a012v012a1!#J .

~A50!

5 (5) 2

We use the derived equations for the sequence 00
~same as in the previous case!, and solve numerically. How-
ever, let us remark that, in the previous case, the SE read

3a01a11a21v01v11v252p, ~A51!

while, in the present case, it reads as

3a01a11a21v01v11v250, ~A52!

emphasizing once more that exact modulo determinati
may have to be checked. The most expedient way is to ch
on the drawing of the candidate under study.

5 (6) 1

For this case, we use the derived equations for the
quence 01111 andsolve them numerically. Another possibi
ity is to also use the symmetry relations, invoke theM0
mapping involved in the sequence to expressw0(a0) and
generate a single equation fora0 .

5 (6) 2

Same as for 5~6! 1.

5 (6) 3

We use the derived equations for the sequence 01111, and
solve them numerically.

6 (1) 1

The derived equations for the sequence 000001 read

cos~w01a0!2cos~w0211a0!50, ~A53!

v016a051
p

2
, ~A54!

r sinv052sina02d cos~w01a0!. ~A55!
2-16
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This example is interesting for two reasons~i! it exempli-
fies once more that we have to be careful with modulo
terminations since the rhs of Eq.~A54! must be~1p/2! in-
stead of ~25p/2!, as would be obtained from a naiv
interpretation of the derived equations and~ii ! symmetry re-
lations have not to be used to obtain simple enough eq
tions.

Equations~A53!–~A55! are better rewritten as

cos~w01a0!2cos~w0211a0!50, ~A56!

r cos~6a0!52sina02d cos~w01a0!, ~A57!

which are solved numerically.

6 (2) 1

Due to symmetry relations, and the high level of dege
eracy, this orbit is easy to validate, whatever the meth
used.

6 (3) 1

We use the derived equations specified for the seque
000101, being careful with the exact modulo determinat
for the SE, and solve numerically. The use of symmetry
lations is not useful.

6 (4) 1 and 6 (4) 2

We use the derived equations for the sequence 000
with correct modulo determinations for the SE, and the sy
metry relationv15v0 , and solve numerically.

6 (5) 1

The FE with symmetry relations reduces to an ident
Returning to basic equations, we implement symmetry re
tions leading tow052p1a0 , and derive a single equatio
for a0 , to be solved numerically.

6 (7) 1 and 6 (7) 2

We use the derived equations for the sequence 000
with correct modulo determination for the SE, impleme
symmetry relations to obtain simplified FE and SE, and so
numerically.

6 (8) 1

With symmetry and degeneracy relations, the SE beco
an identity. Basic equations, however, lead tow05p1a0 ,
and to a single equation fora0 , to be solved numerically.

6 (8) 2

Same as for 6~8! 1, but withw052p1a0 .

6 (8) 3

With symmetry relations, the FE becomes an identity. R
turning to basic equations and implementing symmetry re
tions, we may deduce new derived equations
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2 sina01d@cos~w01a0!1cos~w023a0!1cos~w01a0

12v0!1cos~w023a012v1!#50, ~A58!

v052arcsinH 1

r
@sina01d cos~w01a0!#J , ~A59!

v15arcsinH 1

r
@sina01d cos~w023a0!#J , ~A60!

r sinv02sin~w02a01v01v1!2d cos~w01a012v0!50,

~A61!

which are solved numerically.

6 (8) 4

Same as for 6~8! 3, with new derived equations readin
as

sina01d cos~w01a0!1~11d!cos~w01a012v0!50,

~A62!

sina01d cos~w023a0!1~11d!cos~w023a022v3!50,

~A63!

v052arcsinH 1

r
@sina01d cos~w01a0!#J , ~A64!

v352arcsinH 1

r
@sina01d cos~w023a0!#J . ~A65!

6 (9) 1

Same as 6~8! 3 with the new derived equations reading

sina01d@cos~w01a0!1cos~w01a012v0!#

1~r 2d!sinv150, ~A66!

sina01~d2r !cos~w023a0!50, ~A67!

v052arcsinH 1

r
@sina01d cos~w01a0!#J , ~A68!

a152arcsin@r sinv02d cos~w01a012v0!#,
~A69!

v152arcsinH 1

r
@sina11d cos~w01a012v012d1!#J .

~A70!

6 (10) 1

We use derived equations for the sequence 001111,imple-
ment symmetry relations, check the exact modulo deter
nation in the SE, and solve numerically.
2-17
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6 (10) 2

We use derived equations for the sequence 001111,imple-
ment symmetry relations, invoke the lastM0 mapping to
show thatw052a01p2 , and establish a single relation fo
a0 , possibly to be solved numerically. This periodic orbit
actually particularly difficult to validate. The most expedie
way has been to determinea0 by trials and errors with a
symbolic computation software.
,

3

-

J

ch

in
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6 (11) 1

We use derived equations for the sequence 011111,imple-
ment symmetry relations, invoke theM0-mapping to show
that w052p1a0 , and establish a single relation fora0 ,
possibly to be solved numerically. Actually, as for the pre
ous case, we solved the equation by trials and errors, wi
symbolic computation software.
,
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@17# J. U. Nöckel and A. D. Stone, inOptical Processes in Micro-

cavities~Ref. @3#!, pp. 389–426.
@18# A. D. Stone and J. U. No¨ckel, Opt. Photonics News Decembe

37 ~1997!.
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